TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Neurotranmissores E Suas Funções

Trabalho Escolar: Neurotranmissores E Suas Funções. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  16/3/2014  •  2.537 Palavras (11 Páginas)  •  292 Visualizações

Página 1 de 11

1 INTRODUÇÃO

Neurotransmissores são substâncias químicas produzidas pelos neurônios, as células nervosas. Por meio delas, podem enviar informações à outras células. Podem também estimular a continuidade de um impulso ou efetuar a reação final no órgão ou músculo alvo.

Essas substâncias atuam no encéfalo, na medula espinhal e nos nervos periféricos e na junção neuromuscular ou placa motora.

Quimicamente, os neurotransmissores são moléculas relativamente pequenas e simples. Diferentes tipos de células secretam diferentes neurotransmisores. Cada substância química cerebral funciona em áreas bastante espalhadas mas muito específicas do cérebro e podem ter efeitos diferentes dependendo do local de ativação. Cerca de 60 neurotransmissores foram identificados e podem ser classificados, em geral em uma das quatro categorias.

O objetivo deste trabalho é mostrar a importância dos neurotransmissores e sua larga utilização pelo organismo, possibilitando assim a realização de um sem número de reações no organismo, bem como apresentar alguns neurotransmissores e sua área de atuação.

2 SINAPSE

Dado que os neurônios formam uma rede de atividades elétricas, eles de algum modo têm que estar interconectados. Quando um sinal nervoso, ou impulso, alcança o fim de seu axônio, ele viajou como um potencial de ação ou pulso de eletricidade. Entretanto, não há continuidade celular entre um neurônio e o seguinte; existe um espaço chamado sinapse. As membranas das células emissoras e receptoras estão separadas entre si pelo espaço sináptico, preenchido por um fluido. O sinal não pode ultrapassar eletricamente esse espaço. Assim, substâncias químicas especias, chamadas neurotransmissores, desempenham esse papel. Elas são liberadas pela membrana emissora pré-sináptica e se dinfundem através do espaço para os receptores da membrana do neurônio receptor pós-sináptico. A ligação dos neurotransmissores para esses receptores tem como efeito permitir que íons (partículas carregadas) fluam para dentro e para fora da célula receptora, conforme visto no artigo sobre condução nervosa.

A direção normal do fluxo de informação é do axônio terminal para o neurônio alvo, assim o axônio terminal é chamado de pré-sináptico (conduz a informação para a sinapse) e o neurônio alvo é chamado de pós-sináptico (conduz a informação a partir da sinapse).

3 TIPOS DE SINAPSE

A sinapse típica, e a mais frequente, é aquela na qual o axônio de um neurônio se conecta ao segundo neurônio através do establecimento de contatos normalmente de um de seus dendritos ou com o corpo celular. Existem duas maneiras pelas quais isso pode acontecer: as sinapses elétricas e as sinapses químicas.

3.1 Sinapse Elétrica

A maioria das sinapses dos mamíferos são sinapses químicas, mas existe uma forma simples de sinapse elétrica que permite a transferência direta da corrente iônica de uma célula para a célula seguinte. As sinapses elétricas ocorrem em locais especializados chamados junções. Elas formam canais que permitem que os ions passem diretamente do citoplasma de uma célula para o citoplasma da outra. A transmissão nas sinapses elétricas é muito rápida; assim, um potencial de ação no neurônio pré-sináptico, pode produzir quase que instantaneamente um potencial de ação no neurônio pós-sináptico. Sinapses elétricas no sistema nervoso central de mamíferos, são encontradas principalmente em locais especiais onde funções normais exigem que a atividade dos neurônios vizinhos seja altamente sincronizada. Embora as junções sejam relativamente raras entre os neurônios de mamíferos adultos, eles são muito comuns em uma grande variedade de células não neurais, inclusive as células do músculo liso cardíaco, células epiteliais, algumas células glandulares, glia, etc. Elas também são comuns em vários invertebrados.

Quando um impulso elétrico ao viajar para a "cauda" da célula, chamado axônio", chega a seu término, ele dispara vesículas que contêm um neurotransmissor as quais movem-se em direção a membrana terminal. As vesículas se fundem com a membrana terminal para liberar seus conteúdos. Uma vez na fenda sináptica (o espaço entre dois neurônios) o neurotransmissor pode ligar-se aos receptores (proteínas específicas) na membrana de um neurônio vizinho.

3.2 Sinapse Química

Nesse tipo de sinapse, o sinal de entrada é transmitido quando um neurônio libera um neurotransmissor na fenda sináptica, o qual é detectado pelo segundo neurônio através da ativação de receptores situados do lado oposto ao sítio de liberação. Os neurotransmissores são substâncias químicas produzidas pelos neurônios e utilizadas por eles para transmitir sinais para outros neurônios ou para células não-neuronais (por exemplo, células do músculo esquelético, miocárdio, células da glândula pineal) que eles inervam.

A ligação química do neurotransmissor aos receptores causa uma série de mudanças fisiológicas no segundo neurônio que constituem o sinal. Normalmente a liberação do primeiro neurônio (chamado pré-sináptico) é causado por uma série de eventos intracelulares evocados por uma despolarização de sua membrana, e quase que invariavelmente quando um potencial de ação é gerado.

4 TIPOS DE SINAPSE QUÍMICA

Existem dois tipos de sinapses químicas, de acordo com o efeito que causam no elemento pós-sináptico:

4.1 Sinapses Excitatórias

Sinapses excitatórias causam uma mudança elétrica excitatória no potencial pós-sináptico (EPSP). Isso acontece quando o efeito líquido da liberação do transmissor é para despolarizar a membrana, levando-o a um valor mais próximo do limiar elétrico para disparar um potencial de ação. Esse efeito é tipicamente mediado pela abertura dos canais da membrana (tipos de poros que atravessam as membranas celulares para os íons cálcio e potássio.

4.2 Sinapses Inibitórias

As sinapses inibitórias causam um potencial pós-sináptico inibitório (IPSP), porque o efeito líquido da liberação do transmissor é para hiperpolarizar a membrana, tornando mais difícil alcançar o potencial de limiar elétrico. Esse tipo de sinapse inibitória funciona graças à abertura de diferentes canais de ions na membranas: tipicamente os canais cloreto (Cl-) ou potássio (K+).

5 NEUROTRANSMISSORES

Quimicamente, os neurotransmissores são moléculas

...

Baixar como (para membros premium)  txt (18.2 Kb)  
Continuar por mais 10 páginas »
Disponível apenas no TrabalhosGratuitos.com