TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Constante de Euler

Artigo: Constante de Euler. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  11/3/2014  •  Artigo  •  945 Palavras (4 Páginas)  •  469 Visualizações

Página 1 de 4

Pesquisar mais sobre a constante de Euler e fazer um resumo sobre esse assunto de pelo menos uma página, constando dos dados principais a respeito do assunto e curiosidades.

Constante de Euler

O número de Euler é uma constante matemática que engloba cálculos de nível superior, empregado, a título de exemplo, em: Cálculo de diferenciais e integradas.

O número de Euler é assim chamado em homenagem ao matemático Suíço Leonhard Euler, é à base dos logaritmos naturais.

Leonhard Euler começou a usar a letra e para representar a constante em 1727, e o primeiro uso de e foi na publicação Euler’s Mechanica (1736). As verdadeiras razões para escolha da letra e são desconhecidas, mas talvez seja porque e seja a primeira letra da palavra exponencial.

Temainda a remarcável propriedade que a taxa de variação de ex no ponto x = t vale et daí sua importância no cálculo diferencial e integral, e seu papel único como base do logaritmo natural.

Ou ainda, se se escolherem números entre zero e 1 até que o seu total ultrapasse 1, o número mais provável de seleções será igual a e.

O Número de Euler com as primeiras 200 casas decimais:

Vida e obra

Nasceu em Basiléia, filho do pastor calvinista Paul Euler (lê-se "Óilã") e de Marguerite Brucker, filha de um pastor. Teve duas irmãs mais novas: Anna Maria e Maria Magdalena.

Pouco depois do seu nascimento, sua família mudou-se para a cidade de Riehen, onde passou a maior parte da sua infância. Desprezando seu prodigioso talento matemático, determinou que ele estudasse Teologia e seguiria a carreira religiosa. Paul Euler era um amigo da família Bernoulli, e Johann Bernoulli - que foi um dos matemáticos mais importantes da Europa - seria eventualmente uma influência no pequeno Euler.

A sua instrução formal adiantada começou na terra natal para onde foi mandado viver com a sua avó materna. Aos 14 anos matricula-se na Universidade da Basiléia, e em 1723, recebe o grau de Mestre em Filosofia com uma dissertação onde comparava Descartes com Newton. Nesta altura, já recebia, aos sábados à tarde, lições de Johann Bernoulli que rapidamente descobriu o seu talento para a matemática.

Euler nesta altura estudava teologia, grego e hebreu, pela vontade de seu pai para mais tarde se tornar pastor. Porém Johann Bernoulli resolveu intervir e convenceu Paul Euler que o seu filho estava destinado a ser um grande matemático.

Em 1726, Euler completou a sua dissertação na propagação do som, e a 1727 incorporou a competição premiada do problema da Academia de Paris, onde o problema do ano era encontrar a melhor maneira de colocar os mastros num navio. Ganhou o segundo lugar, perdendo para Pierre Bouguer, mais tarde conhecido como “o pai da arquitetura naval”. Euler, entretanto, ganharia o prêmio anual 12 vezes.

FORMULA | N | RESULTADOS |

e=limn→∞1+1nn | 1 | 2 |

| 5 | 2.48832 |

| 10 | 2.5937446 |

| 50 | 2.691588029 |

| 100 | 2.704813829 |

| 500 | 2.715568521 |

| 1000 | 2.716923932 |

| 5000 | 2.71801005 |

| 10000 | 2.718145927 |

| 100000 | 2.718268237 |

| 1000000 | 2.718280469 |

À medida que o valor de n aumenta o valor resultante é constante e se aproxima do valor do numero de Euler.

Passo 2

Pesquisar sobre “séries harmônicas” na música, na matemática e na física e sobre somatória infinita de uma PG. Fazer um relatório resumo com as principais informações sobre o assunto de pelo menos uma página e explicar como a Constante de Euler se relaciona com série harmônica e com uma PG, mostrando as similaridades e as diferenças.

A série harmónica alternada é definida conforme: Esta série é convergente como consequência do teste da série alternada, e seu valor pode ser calculado pela série de Taylor do logaritmo natural. Se se definir o n-ésimo número harmónico tal que então Hn cresce tão rapidamente quanto o logaritmo natural de n. Isto porque a soma é aproximada ao integral cujo valor é ln(n).

Mais precisamente, se considerarmos o limite: onde γ é a constante Euler-Mascheroni, pode ser provado

...

Baixar como (para membros premium)  txt (6.4 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com