TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

O Solucionarão CNC

Por:   •  24/10/2019  •  Trabalho acadêmico  •  467 Palavras (2 Páginas)  •  137 Visualizações

Página 1 de 2

Homework 2(6th edition)  

   

Problem 8.15

(a)

When the oxygen level is 5mg/l, we have:

5 = 10 - 20(e−0.15x - e−0.5x)

0 = 5 - 20(e−0.15x - e−0.5x)

Let f(x) = 5 - 20(e−0.15x - e−0.5x)

Plot f(x)

[pic 1]

According to the plot, when f(x) = 0, x is approximately equal to 1(between 0.8 to 1)

Now we can use the Bisection to find the solution:

xl = 0.8, xu = 1, xr =  , εa = ||100%[pic 2][pic 3]

iteration

xl

xu

xr

f(xl)*f(xr)

f(xu)*f(xr)

εa

0

0.8

1

0.9

>0

<0

1

0.9

1

0.95

>0

<0

5.3%

2

0.95

1

0.975

>0

<0

2.6%

3

0.975

1

0.9875

<0

>0

1.3%

4

0.975

0.9875

0.98125

0.64%

0.64% < 1% , so the distance should be x = 0.98125 with a percent relative error εa = 0.64%

Checking the result by substituting it into original equation:

c = 10 - 20(e−0.15* 0.98125 - e−0.5*0.98125)

= 4.982

(b)

c = 10 - 20(e−0.15x - e−0.5x)

let f(x) = 10 - 20(e−0.15x - e−0.5x)

f’(x) = 3e-0.15x – 10e-0.5x, when f’(x) = 0, the oxygen should be at a minimum.

0 = 3e-0.15x – 10e-0.5x

let g(x) = 3e-0.15x – 10e-0.5x

plot the g(x)

[pic 4]

According to the plot, when g(x) = 0, x should between 3 to 4.

We can use the Bisection to find the solution

xl = 3, xu = 4, xr =  , εa = ||100%[pic 5][pic 6]

iteration

xl

xu

xr

f(xl)*f(xr)

f(xu)*f(xr)

εa

0

3

4

3.5

<0

>0

1

3

3.5

3.25

>0

<0

7.7%

2

3.25

3.5

3.375

>0

<0

3.7%

3

3.375

3.5

3.4375

>0

<0

1.8%

4

3.4375

3.5

3.46875

<0

>0

0.9%

5

3.4375

3.46875

3.453125

<0

>0

0.45%

6

3.4375

3.453125

3.4453125

<0

>0

0.23%

7

3.4375

3.445313

3.4414065

<0

>0

0.11%

8

3.4375

3.4414065

3.43945325

0.06%

The distance x is about 3.43945325 when g(x) = 0 with a percent relative error εa = 0.06%. at this point , oxygen is at minimum.

Compute the minimum concentration:

c = 10 - 20(e−0.15* 3.43945325 - e−0.5*3.43945325)

= 1.643255

Problem 8.16

(a) the graphical method:

When the concentration of bacteria reduces to 15, we have:

15 = 75e−1.5t + 20e−0.075t

0 = 75e−1.5t + 20e−0.075t – 15

let f(t) = 75e−1.5t + 20e−0.075t – 15

plot f(t):

[pic 7]

According to the plot, when f(t) = 0, t ≈ 4. So when the concentration of bacteria reduces to 15, t ≈ 4

(b) Newton-Raphson method

f’(t) = -112.5e−1.5t – 1.5e−0.075t

so:

ti+1 = ti - [pic 8]

initial guess of t = 6 and a stopping criterion of 0.5%, so we start with an initial guess of t = 6 and use the above iterative equation to compute:

...

Baixar como (para membros premium)  txt (4.6 Kb)   pdf (179 Kb)   docx (601 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com