O uso do cálculo diferencial e integral
Artigo: O uso do cálculo diferencial e integral. Pesquise 862.000+ trabalhos acadêmicosPor: renatocapalbo • 26/11/2013 • Artigo • 441 Palavras (2 Páginas) • 507 Visualizações
Etapa 3
Passo 1
O Cálculo Diferencial e Integral, também chamado de cálculo infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.
O cálculo permite calcular a área da região assinalada.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Desenvolvido por Isaac Newton (1643-1727) e Gottfried Wilhelm Leibniz (1646-1716), em trabalhos independentes. O Cálculo auxilia em vários conceitos e definições na matemática, química, física clássica, física moderna e economia. O estudante de cálculo deve ter um conhecimento em certas áreas da matemática, como funções, geometria e trigonometria, pois são a base do cálculo. O cálculo tem inicialmente três "operações-base", ou seja, possui áreas iniciais como o cálculo delimites, o cálculo de derivadas de funções e a integral de diferenciais.
A integral indefinida também pode ser chamada de antiderivada, uma vez que é um processo que inverte a derivada de funções. Já a integral definida, inicialmente definida como Soma de Riemann, estabelece limites de integração, ou seja, é um processo estabelecido entre dois intervalos bem definidos, daí o nome integral definida.
Com o advento do "Teorema Fundamental do Cálculo" estabeleceu-se uma conexão entre os dois ramos do cálculo: o Cálculo Diferencial e o Cálculo Integral. O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu de um problema aparentemente não relacionado, o problema da área. O professor de Isaac Newton em Cambridge, Isaac Barrow, descobriu que esses dois problemas estão de fato estritamente relacionados, ao perceber que a derivação e a integração são processos inversos. Foram Leibniz e Newton que exploraram essa relação e a utilizaram para transformar o cálculo em um método matemático sistemático. Particularmente ambos viram que o Teorema Fundamental os capacitou a calcular áreas e integrais muito mais facilmente, sem que fosse necessário calculá-las como limites de soma (método descrito pelo matemático Riemann, pupilo de Gauss).
Passo 2
Considerem as seguintes regiões S1 (Figura 1) e S2 (igura 2). As áreas de S1 e S2 são, respectivamente 0,6931 u.a e 6,3863 u.a.
Figura 1
S1=021x=lnx02→ln2-ln0=0,6931 u.a
Figura 2
S24=044x=4.lnx04→4.ln4-4.ln0=5,5452 u.a
S2=4.5,5452=22,1808 u.a
Podemos afirmar que:
(c). (I) é verdadeira e (II) é falsa
Passo 3
...