Operações com vetores
Artigo: Operações com vetores. Pesquise 862.000+ trabalhos acadêmicosPor: faahstrip • 21/10/2014 • Artigo • 713 Palavras (3 Páginas) • 206 Visualizações
Determinado por um segmento orientado AB, é o conjunto de todos os segmentos orientados equipolentes a AB.
Se indicarmos com este conjunto, simbolicamente poderemos escrever:
onde XY é um segmento qualquer do conjunto.
O vetor determinado por AB é indicado por ou B - A ou .
Um mesmo vetor é determinado por uma infinidade de segmentos orientados, chamados representantes desse vetor, os quais são todos equipolentes entre si. Assim, um segmento determina um conjunto que é o vetor, e qualquer um destes representantes determina o mesmo vetor. Usando um pouco mais nossa capacidade de abstração, se considerarmos todos os infinitos segmentos orientados de origem comum, estaremos caracterizando, através de representantes, a totalidade dos vetores do espaço. Ora, cada um destes segmentos é um representante de um só vetor. Consequentemente, todos os vetores se acham representados naquele conjunto que imaginamos.
As características de um vetor são as mesmas de qualquer um de seus representantes, isto é: o módulo, a direção e o sentido do vetor são o módulo, a direção e o sentido de qualquer um de seus representantes.
O módulo de se indica por || .
Soma de vetores
Se v=(a,b) e w=(c,d), definimos a soma de v e w, por:
v + w = (a+c,b+d)
Propriedades da Soma de vetores
Diferença de vetores
Se v=(a,b) e w=(c,d), definimos a diferença entre v e w, por:
v - w = (a-c,b-d)
Produto de um número escalar por um vetor
Se v=(a,b) é um vetor e c é um número real, definimos a multiplicação de c por v como:
c.v = (ca,cb)
Propriedades do produto de escalar por vetor
Quaisquer que sejam k e c escalares, v e w vetores:
Módulo de um vetor
O módulo ou comprimento do vetor v=(a,b) é um número real não negativo, definido por:
Vetor unitário
Vetor unitário é o que tem o módulo igual a 1.
Existem dois vetores unitários que formam a base canônica para o espaço R², que são dados por:
i = (1,0) j = (0,1)
Para construir um vetor unitário u que tenha a mesma direção e sentido que um outro vetor v, basta dividir o vetor v pelo seu módulo, isto é:
Observação:
Para construir um vetor u paralelo a um vetor v, basta tomar u=cv, onde c é um escalar não nulo. Nesse caso, u e v serão paralelos:
Se c = 0, então u será o vetor nulo.
Se 0 < c < 1, então u terá comprimento menor do que v.
Se c > 1, então u terá comprimento maior do que v.
Se c < 0, então u terá sentido oposto ao de v.
Decomposição
...