TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Pesquisa por aceleração instantânea

Seminário: Pesquisa por aceleração instantânea. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  27/3/2014  •  Seminário  •  531 Palavras (3 Páginas)  •  188 Visualizações

Página 1 de 3

Montar uma tabela, usando seu exemplo acima, com os cálculos e plotenum gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5sPasso 2

Montar uma tabela, usando seu exemplo acima, com os cálculos e plotenum gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o intervalo dado.

Calcular a área formada pela função da velocidade, para o intervalo dado acima.

Gráfico s(m) x t(s) x = 4.x t²+ + t3 + 7t – 8

Gráfico v(m) x t(s) v = 8x+3t²+7

Passo 3

Pesquisar sobre a aceleração instantânea de um corpo móvel, que define a aceleração como sendo a derivada da função velocidade.

Explicar o significado da aceleração instantânea a partir da função s (espaço), mostrando que é a aceleração é a derivada segunda.

Utilizar o exemplo do Passo 1 e mostrar quem é a sua aceleração a partir do conceito de derivação aplicada a sua função espaço e função velocidade.

Aceleração instantânea da partícula no instante t é o limite dessa razão quando Δt tende a zero. Representando a aceleração instantânea por ax, temos então:

A aceleração de uma partícula em qualquer instante é a taxa na qual sua velocidade está alterando naquele instante. A aceleração instantânea é a derivada da velocidade em relação ao tempo: a = dv dt. Vamos derivar a equação da velocidade instantânea para obter a aceleração instantânea. Função da velocidade em um determinado instante.

V=V0¹-¹ + a*t¹-¹

V=1*V0¹-¹ + 1*a*t¹-¹

a=a

Podemos observar que a derivada da velocidade instantânea resulta direto na aceleração.

Passo 4

Plotar num gráfico sua função a(m/s2) x t(s) para um intervalo de 0 a 5 segundos e dizer que tipo de função você tem.

Gráfico aceleração a(m/s²) x t(s) a=8+6t

Etapa 2

Aula-tema: Conceito de Derivadas e Regras de Derivação

Passo1

O que é a Constante de Euler?

A constante foi definida pela primeira vez pelo matemático suíço Leonhard Euler no artigo De Progressionibus harmonicus observationes, publicado em 1735. Euler usou a notação C para a constante, e inicialmente calculou seu valor até 6 casas decimais. Em 1761 Euler estendeu seus cálculos, publicando um valor com 16 casas decimais. Em 1790 o matemático italiano Lorenzo Mascheroni introduziu a notação γ para a constante, e tentou estender o cálculo de Euler ainda mais, a 32 casas decimais, apesar de cálculos subseqüentes terem mostrado que ele cometera erros na 20°, 22° e 32 casas decimais. (Do 20° dígito,

...

Baixar como (para membros premium)  txt (3.4 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com