Distribuição de Frequência
Por: goems • 28/5/2015 • Pesquisas Acadêmicas • 1.907 Palavras (8 Páginas) • 400 Visualizações
[pic 1]
UNIVERSIDADE FEDERAL DO AMAPÁ
PRÓ-REITORIA DE ENSINO E GRADUAÇÃO
DEPARTAMENTO DE EDUCAÇÃO A DISTÂNCIA
CURSO DE BACHARELADO EM ADMINISTRAÇÃO PÚBLICA
JOSÉ DOS SANTOS GOMES
Distribuição de Frequência
Macapá-Ap
Maio/2015
[pic 2]
UNIVERSIDADE FEDERAL DO AMAPÁ
PRÓ-REITORIA DE ENSINO E GRADUAÇÃO
DEPARTAMENTO DE EDUCAÇÃO A DISTÂNCIA
CURSO DE BACHARELADO EM ADMINISTRAÇÃO PÚBLICA
JOSÉ DOS SANTOS GOMES
Distribuição de Frequência
Trabalho apresentado à disciplina Estatística Aplicada à Administração Pública do Curso de Bacharelado em Administração Pública como instrumento de avaliação da 3ª Semana do 4º Semestre sob a orientação do Prof. Formador à Distância Msc. Antonio Rangel Costa, Turma nº 02 da Universidade Federal do Amapá – UNIFAP.
Macapá-Ap
Maio /2015
I – INTRODUÇÃO
Segundo Tavares (2011), a estatística é uma ferramenta utilizada por gestores ou executivos na obtenção dos “porquês” dos problemas. Depois de se conhecer os fundamentos e os princípios da estatística, ela pode ser utilizada na confecção de gráficos e tabelas e para a utilização de sua técnica, é necessário o uso de vários softwares que realizam automaticamente os cálculos, bastando somente ser alimentados com dados. Ainda segundo o autor Estatística é a ciência que sistematiza o conjunto de métodos utilizados para a obtenção e organização de dados, que podem ser demonstrados através de tabelas, gráficos e análise dos dados.
Segundo Tavares (2011), quando existe uma grande quantidade de dados em determinado conjunto, é indicado à alocação dos dados numa tabela de distribuição de freqüência ou tabela de freqüência, os dados são divididos em classes pré-estabelecidas.
II- DESENVOLVIMENTO
Segundo Tavares (2011), os dados na forma em que são coletados sem nenhum tratamento na realização de uma pesquisa são chamados de dados brutos e as tabelas de frequência servem de base para as representações, vale lembrar que o primeiro passo, para se construir uma tabela de frequência é a escolha das classes. Para o autor distribuição de frequência é a forma de se agrupar os dados em classes para se obter a quantidade ou a percentagem dos dados em cada classe.
Os dados abaixo apresentados referem-se a seqüência numérica apresentada a seguir, que mostra as idades de motociclistas e de seus caronas na época em que morreram em acidentes fatais de trânsito. Com base nos dados, desenvolva as questões a seguir.
7 – 42 – 37 – 25 – 38 – 28 – 21 – 23 – 27 – 24 – 30 – 19 - 14 – 40 – 25 – 51 – 18 – 20 – 17 – 18 – 34 – 23 – 28 – 29 – 16 – 31 – 33
2.1 - Organização do Rol
Segundo Tavares (2011), para a elaboração do Rol deve-se colocar o conjunto dos dados brutos de maneira ordenada para obtermos dados elaborados, dessa forma facilitará o entendimento das informações. Vale observarmos que os dados apresentados acima estão na forma em que foram coletados, por isso são chamados de dados brutos havendo a necessidade de serem organizados para aumentar o nível de informação, portanto vamos organizá-los em uma tabela.
Rol – São dados organizados em ordem crescentes ou decrescentes.
ROL
7 | 14 | 16 | 17 | 18 | 18 | 19 | 20 | 21 |
23 | 23 | 24 | 25 | 25 | 27 | 28 | 28 | 29 |
30 | 31 | 33 | 34 | 37 | 38 | 40 | 42 | 51 |
2.2 - Cálculo dos intervalos de classe (K);
Segundo Tavares (2011), classes são os intervalos nos quais os valores da variável analisada são agrupados e para elaborar uma distribuição de frequência é necessário em primeiro lugar que seja determinado o número de classes representado pela letra (K) onde os dados serão agrupados. Para facilitar a pratica é sugerido que seja utilizado de 5 à 20 classes.
para n ≤ 100, onde n é o número total de observações
log n, para n > 100
[pic 3]
= amplitude de classe; [pic 4]
= amplitude total; [pic 5]
= número de intervalo de classes;[pic 6]
n = número total de observações que é 27
Cálculo do nº de intervalo de classes () - O número de classe pode ser calculado em função da raiz quadrada do número total de observações (n) contido no rol em que:[pic 7]
= [pic 8][pic 9]
= 5,19615242271 [pic 10]
k ≅ 5 (número de intervalos de classes)
A= 51-7 = 44 (Amplitude total)
[pic 11]
[pic 12]
(amplitude de classe)[pic 13]
Calculo do Limite Inferior da 1ª classe – É dado por:
L. inf. da 1ª Classe = Menor valor das observações - [pic 14]
L. inf. da 1ª Classe = 7 – [pic 15]
L. inf. da 1ª Classe = 7 – 5,5
L. inf. 1ª classe = 1,5
Calculo do limite superior da 1ª classe – É dado por:
Limite inferior + Amplitude de classes
C = 11 Amplitude de classe[pic 16]
1,5+11 = 12,5
1,5 ˫ 12,5 ➔ primeira classe
12,5 ˫ 23,5 ➔ segunda classe
23,5 ˫ 34,5 ➔ terceira classe
...