TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

O Cálculo de Várias Variáveis

Por:   •  6/3/2018  •  Trabalho acadêmico  •  1.673 Palavras (7 Páginas)  •  265 Visualizações

Página 1 de 7

Uni-BH

Cálculo de Várias Variáveis – Lista de Exercícios

Professor Laurito Alves

Lista de Exercícios -  NÃO VALE PONTOS

1ª Parte: Do nosso livro – Thomas – 12ª edição

No livro do Thomas, volume 2, 12ª edição (está no SOL) fazer os seguintes exercícios:

Seção 14.1 – Página 215 e seguintes - 1 a 12

2ª parte – minhas questões preferidas

  1. A temperatura T (em graus centigrados) abaixo da superfície da terra é uma função da profundidade x (em pés) do ponto e do mês m (de 1 a 12) em que é feita a medição. Se T(x,m) = e-0,2 x cos (1,7 . 10-2 m – 0,2 x), determine:
  1. A temperatura em junho de um ponto a 10 pés de profundidade
  2. A temperatura em abril de um ponto a 2 pés de profundidade
  3. A temperatura em dezembro a 1 pé de profundidade
  1. Considere que a temperatura, em graus centígrados, em um ponto qualquer (x,y) de uma chapa de metal é dada por T(x,y) = 10 +25 . Uma formiguinha está no ponto A(1,1). Determine:[pic 1]
  1. A temperatura no ponto A.
  2. Dê exemplo de dois pontos distintos da chapa com a mesma temperatura do ponto (2,3). Qual é essa temperatura ?

  1. A profundidade de um lago, em metros, em um ponto (x,y) é dada por                                P(x,y) = [ 100 + (x2 + 100x)(10 – y) + y + y2 + 280 cos(xy) ] / 23. Um barco está parado no ponto A(3 , 4) e vai se deslocar, em linha reta, até a origem. Determine:
  1. A profundidade no ponto A
  2. A profundidade na origem
  1. Uma fábrica pretende produzir x unidades do produto A e y unidades do produto B. Essa fábrica possui um custo fixo e independente da produção de R$ 85.000,00 (gastos com salários, água, luz, telefone, material de escritório, etc). Além disso, para produzir cada unidade do produto A há um gasto de a reais em matéria prima e para o produto B o gasto em matéria prima é de b reais por unidade. Serão vendidas z unidades do produto A por c reais cada uma e w unidades do produto B por d reais cada uma. Determine a lei da função que representa o lucro dessa fábrica.
  1. As ondas de choque produzidas por um avião Concorde dependem da temperatura abaixo do avião e da altitude na qual ele voa. O tapete de ondas é a região do solo que recebe as ondas de choque diretamente do Concorde, e não as ondas refletidas pelo solo ou as difratadas pela atmosfera. A largura w do tapete de onda, que é a região onde as pessoas no solo recebem as ondas de choque, depende de:

T: a temperatura no solo (em graus Kelvin)

H = a altitude do Concorde (em km)

D = a taxa de variação da temperatura entre o avião e o solo (em graus Kelvin por km)

A expressão de w é w = .  A rota Paris-Washington do Concorde passa ao sul da ilha Nantucket a uma altitude de 16,8 km. Se a temperatura na ilha é 290K e a taxa de variação da temperatura é de 5k/km, a quantos km ao sul da ilha o avião deve passar para que a ilha fique fora do tapete de onda ?[pic 2]

  1. Considere as funções f(x,y,z) = 2x + 3y + z e g(x,y,z) = x2 + y2 + z2. Mostre que                  f(0,0,0) = g(0,0,0). Existe algum outro ponto P do espaço que não é a origem tal que      f(P) = g(P) ? Caso exista, qual ?

  1. Considere a função f(x,y) = . Qual é maior: f(1,2) ou f(2,3) ?[pic 3]
  1. Considere a função f(x,y,z,w) = xy + yz – 3zw. Determine, de forma mais simples possível, o valor de

[pic 4]

  1. Se f(x,y,z) = xy + z, determine, de forma mais simples possível, o valor de

[pic 5]

  1. No plano cartesiano, considere os pontos A(a,0), B(-a,0) e C(x,y), onde “a” é uma constante real. A função f(x,y) representa a soma dos quadrados das distâncias de C até A e B. Determine a lei de f(x,y).

  1. Para a medicina, a área de uma pessoa, em cm2, é dada pela expressão                                         A = 71,84 w0,425 h0,725 em que w é o peso do indivíduo em kg e h é sua altura em cm. Seu amado professor pesa 85kg e mede 1,74m. Quem possui maior área: você ou eu ?
  1. Quanto maior a área de uma pessoa, mais calor ela perde para o ambiente, fazendo-a sentir frio. O calor é produzido pelas células do organismo, assim, pessoas de maior massa podem produzir mais calor. Um índice interessante é obtido dividindo-se a área do indivíduo por sua massa. Explique por que um valor alto para esse índice significa que a pessoa sente mais frio. A seguir, calcule esse índice para você e para um recém-nascido de 51cm de altura e 3,5 kg de peso.
  1. Considere que a temperatura T, em graus centígrados, em um ponto P de coordenadas (x,y,z) – com x, y e z dados em metros - é dada por T(x,y,z) = . Determine a temperatura nos pontos A(3,2,1) e B(4,5,6)[pic 6]
  1. A temperatura do ar (em graus centígrados) no ponto (x,y,z) do espaço é dada por T(x,y,z) = x2 – y + z2. Um mosquito está no ponto (1,2,1). Qual é a temperatura no ponto em que ele está ?
  1. Qualquer ponto na superfície da Terra possui uma latitude x e uma longitude y, que definem um par ordenado (x,y). Temos  e ; com latitude negativa representando o hemisfério sul e latitude positiva representando o hemisfério norte; e longitude negativa representando o hemisfério oriental e longitude positiva representando o hemisfério ocidental. Por exemplo, uma localização aproximada de Belo Horizonte é (-20 , 44). Considere que a temperatura, em Celsius, no ponto (x,y) é dada por T(x,y) = .[pic 7][pic 8][pic 9]
  1. Qual é a temperatura aqui em BH ?
  2. Qual seria a temperatura em Nova York ? E em Moscou ?
  3. Essa função é realista ? Justifique sua resposta
  1. Represente no plano cartesiano o domínio de cada uma das funções abaixo:
  1. [pic 10]
  2. [pic 11]
  3. [pic 12]
  4. [pic 13]
  5. [pic 14]
  6. [pic 15]
  7. [pic 16]
  8. [pic 17]
  1. Esboce o gráfico das funções abaixo:
  1. F(x,y) = xy2 + 2x + y
  2. F(x,y) = 2 + cos(3x+y) + sen(2x – y)
  3. F(x,y) = 1 – x – y
  4. F(x,y) = 4x2 + y2 + 1
  5. F(x,y) = cos x
  6. F(x,y) = ey
  7. F(x,y) = x ey
  8. F(x,y) = [pic 18]
  9. F(x,y) = [pic 19]
  10. F(x,y) = [pic 20]
  11. F(x,y) = [pic 21]
  12. F(x,y) = cos (xy)
  13. F(x,y) = xy2 – x3 (sela do macaco)
  14. F(x,y) = xy3 – yx3 (sela do cachorro)
  1. Esboce o gráfico de f(x,y) =  para vários valores diferentes da constante c. A seguir, explique como a forma do gráfico é afetada pelo valor de c.[pic 22]

...

Baixar como (para membros premium)  txt (6.5 Kb)   pdf (123.8 Kb)   docx (16.4 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com