Minimizar Custo, Maximizar Lucros como também controlar gastos
Seminário: Minimizar Custo, Maximizar Lucros como também controlar gastos. Pesquise 862.000+ trabalhos acadêmicosPor: renyazevedo • 25/3/2014 • Seminário • 1.465 Palavras (6 Páginas) • 452 Visualizações
TRABALHO DESAFIO DE APRENDIZAGEM DE MATEMÁTICA APLICADA
ROSIMEIRE ALVES DA SILVA
TRABALHO DESAFIO DE APRENDIZAGEM DE MATEMÁTICA APLICADA
CAMPINAS
Trabalho da disciplina de matemática aplicada do curso de administração tem como
objetivo compreender os seguintes temas: Minimizar Custo, Maximizar Lucros como
também controlar gastos.
1. SITUAÇÕES E QUESTÕES APRESENTADAS NO TEXTO “ESCOLA REFORÇO
1.1 Identificações do Contudo Matemático.
2. FUNÇÃO DE PRIMEIRO GRAU
3. FUNÇÃO RACIONAL
4. FUNÇÃO EXPONENCIAL
5. RESOLUÇÃO DOS PROBLEMAS “ESCOLA REFORÇO ESCOLAR”
5.1. VARIAÇÃO MÉDIA E VARIAÇÃO IMEDIATA
6. CONSELHO AO CONTADOR
1. SITUAÇÕES E QUESTÕES APRESENTADAS NO TEXTO “ESCOLA REFORÇO
Com a intenção de ampliar seus negócios e aprimorar os serviços prestados, a escola
Reforço Escolar, decidiu fazer novos investimentos, como contratação de três novos
professores, e curso de qualificação para antigos e novos professores, o projeto de
investimento ainda conta com a aquisição de computadores e softwares. O investimento
total seria de R$94000,00, sendo que R$ 40000,00 no ato de contratação dos serviços,
para capacitação de 20 professores da escola, e R$54000,00 no ato de entrega dos
computadores, o custo para aquisição de 30 novos computadores multimídia, mais
pacote de softwares educativos. Estes são os valores a ser financiado que o proprietário
leva ao Banco. O gerente do Banco atualizou o lucro bruto da escola segundo os
seguintes valores dados pela tabela abaixo:
Período Da Manhã: 180 alunos, Custo por aluno R$ 200,00.
Período Da Tarde: 200 alunos, Custo por aluno R$200,00.
Período Da Noite: 140 alunos, Custo por aluno R$150,00.
Finais de semana: 60 alunos, Custo por aluno R$ 130,00.
1.1 Identificações do Contudo Matemático.
Pelas tarefas exigidas do problema, temos os seguintes conteúdos matemáticos:
Atividade 1: Função de primeiro grau para elaboração da receita correspondente a
cada turno; função racional para elaboração do valor médio das mensalidades; função
de primeiro grau para obter o valor das receitas totais da escola.
Atividade 2: Função racional para os descontos no salário dos professores; função de
primeiro grau para elaborar os custos da escola.
Atividade 3: Função do primeiro grau para obter-se o lucro.
Atividade 4: Função exponencial para saber o valor das parcelas e elaboração de tabela
Atividade 5: função exponencial para obter se o valor do empréstimo.
Atividade 6: Avaliação dos dados extraídos.
2. FUNÇÃO DE PRIMEIRO GRAU Etapa dois passo um
Uma função de primeiro grau é dada por: y= f(x) = mx + b onde m é o coeficiente
angular, ou seja, a taxa de variação média, que da a inclinação da reta, b é o coeficiente
linear, graficamente, b da o ponto em que a reta corta o eixo y. A equação de primeiro
grau é sempre uma reta com m ≠ 0.
3. FUNÇÃO RACIONAL
Uma função racional é dada por: onde P(x) e Q(x) são polinômios e Q(x) ≠ 0, o gráfico
pode apresentar varias formas.
4. FUNÇÃO EXPONENCIAL
Uma função exponencial é dada por: y=f(x) = b * ax onde b representa o valor da função
quando x = 0 e da o ponto em que a curva corta o eixo y, a é a base se temos a > 1 a
função é crescente ser a < 1 a função é decrescente.
5. RESOLUÇÃO DOS PROBLEMAS “ESCOLA REFORÇO ESCOLAR”
Á formula matemática usada para obter o valor das prestações é a seguinte:
Função Receita para cada Turno.
Manhã Tarde Noite Final de Semana
Manhã: R= p*q R=200*q=36.000,00
Tarde: R= p*q R=200*q=40.000,00
Noite: R= p*q R=150*q =21.000,00
Fim de Semana: R= p*q R=130*q=7.800,00
Valor Médio dos Custos para Pais e Alunos: R$680,00
A função receita media será obtida a partir da seguinte forma:
VMm =(200q + 200q + 150q + 130q) ÷ qt.
VMm =(200q + 200q + 150q + 130q) ÷ (4)
A função receita média é dada pela seguinte função: RM= 170 q onde
...