Noções básicas de matemática financeira
Artigo: Noções básicas de matemática financeira. Pesquise 862.000+ trabalhos acadêmicosPor: Sgtsoares2012 • 8/11/2013 • Artigo • 1.004 Palavras (5 Páginas) • 249 Visualizações
Conceitos básicos
A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos matemáticos para simplificar a operação financeira a um Fluxo de Caixa.
Capital
O Capital é o valor aplicado através de alguma operação financeira. Também conhecido como: Principal, Valor Atual, Valor Presente ou Valor Aplicado. Em inglês usa-se Present Value (indicado pela tecla PV nas calculadoras financeiras).
Juros
Juros representam a remuneração do Capital empregado em alguma atividade produtiva. Os juros podem ser capitalizados segundo dois regimes: simples ou compostos.
JUROS SIMPLES: o juro de cada intervalo de tempo sempre é calculado sobre o capital inicial emprestado ou aplicado. JUROS COMPOSTOS: o juro de cada intervalo de tempo é calculado a partir do saldo no início de correspondente intervalo. Ou seja: o juro de cada intervalo de tempo é incorporado ao capital inicial e passa a render juros também.
O juro é a remuneração pelo empréstimo do dinheiro. Ele existe porque a maioria das pessoas prefere o consumo imediato, e está disposta a pagar um preço por isto.
Quando usamos juros simples e juros compostos?
A maioria das operações envolvendo dinheiro utiliza juros compostos. Estão incluídas: compras a médio e longo prazo, compras com cartão de crédito, empréstimos bancários, as aplicações financeiras usuais como Caderneta de Poupança e aplicações em fundos de renda fixa, etc. Raramente encontramos uso para o regime de juros simples: é o caso das operações de curtíssimo prazo, e do processo de desconto simples de duplicatas.
Taxa de juros
A taxa de juros indica qual remuneração será paga ao dinheiro emprestado, para um determinado período. Ela vem normalmente expressa da forma percentual, em seguida da especificação do período de tempo a que se refere:
8 % a.a. - (a.a. significa ao ano). 10 % a.t. - (a.t. significa ao trimestre).
Outra forma de apresentação da taxa de juros é a unitária, que é igual a taxa percentual dividida por 100, sem o símbolo %:
0,15 a.m. - (a.m. significa ao mês). 0,10 a.q. - (a.q. significa ao quadrimestre)
JUROS SIMPLES
O regime de juros será simples quando o percentual de juros incidir apenas sobre o valor principal. Sobre os juros gerados a cada período não incidirão novos juros. Valor Principal ou simplesmente principal é o valor inicial emprestado ou aplicado, antes de somarmos os juros. Transformando em fórmula temos:
J = P . i . n
Onde:
J = juros
P = principal (capital)
i = taxa de juros
n = número de períodos
Exemplo: Temos uma dívida de R$ 8000,00 que deve ser paga com juros de 5% a.m. pelo regime de juros simples e devemos pagá-la em 6 meses. Os juros que pagarei serão:
J = 8000 x 0.05 x 6 = 2.400,00
Ao somarmos os juros ao valor principal temos o montante.
Montante = Principal + Juros
Montante = Principal + ( Principal x Taxa de juros x Número de períodos )
M = P . ( 1 + ( i . n ) )
Exemplo: Calcule o montante resultante da aplicação de R$70.000,00 à taxa de 10,5% a.a. durante 145 dias.
SOLUÇÃO:
M = P . ( 1 + (i.n) )
M = 70000 [1 + (10,5/100).(145/360)]
...