Calculo 3 Edo
Ensaios: Calculo 3 Edo. Pesquise 862.000+ trabalhos acadêmicosPor: charleswill9 • 27/10/2013 • 1.272 Palavras (6 Páginas) • 465 Visualizações
FACULDADE ANHANGUERA – CAMPUS OSASCO
CURSO ENGENHARIA DE CONTROLE E AUTOMAÇÃO – 4° SEMESTRE
_______________________________________________________________
ATPS – Calculo III
_______________________________________________________________
Lucas Vinicius – RA 3708621372
Kleber da cruz – RA 44368658
Anderson Farias – RA 3730725396
Andrés Luiz Scarpa – RA 5632103437
Flavio Francisco dos Santos – RA 5644135204
Gilberlandio Antonio de Oliveira – RA 1299903566
Charles Willians Gomes Soares – RA 9977020615
Osasco - SP, ETAPA 1
Passo 1 (Equipe)
História da Integral
A idéia básica do conceito de integral já estava embutida no método da exaustão atribuído a Eudoxo (406-355 a.C.), desenvolvido e aperfeiçoado por Arquimedes (287-212 a.C.), grande matemático da escola de Alexandria. Pode-se obter a área de uma figura plana irregular ou obter o volume de um sólido com o formato de um barril.
O método da exaustão consiste em "exaurir" a figura dada por meio de outras de áreas e volumes conhecidos. O caso mais conhecido é o famoso problema da quadratura do círculo, isto é, o problema de obter um quadrado com a mesma área de um círculo de raio r dado.
Uma primeira aproximação para a área do círculo é dada pela área do quadrado inscrito no círculo. Com o acréscimo de quatro triângulos isósceles convenientes, obtemos o octógono regular inscrito no círculo, cuja área fornece uma aproximação melhor à área do círculo.
Continuando com o processo de acrescentar novos triângulos, tomamos um polígono regular de 16 lados. Do ponto de vista geométrico, é possível observar que já se tem a impressão de termos exaurido o círculo, embora saibamos que existem algumas áreas que não foram cobertas.
O Cálculo Diferencial e Integral foi criado por Isaac Newton (1642-1727) e Wilhelm Leibniz (1646-1716). O trabalho destes cientistas foi uma sistematização de idéias e métodos surgidos principalmente ao longo dos séculos XVI e XVII, os primórdios da chamada era da Ciência Moderna, que teve início com a Teoria heliocêntrica de Copérnico (1473-1543).
O que permitiu a passagem do método de exaustão para o conceito de integral foi a percepção que em certos casos, a área da região pode ser calculada sempre com o mesmo tipo de aproximação por retângulos.
A idéia ou o conceito de integral foi formulado por Newton e Leibniz no século XVII, mas a primeira tentativa de uma conceituação precisa foi feita por volta de 1820, pelo matemático francês Augustin Louis Cauchy (1789-1857). Os estudos de Cauchy foram incompletos mas muito importantes por terem dado início à investigação sobre os fundamentos do Cálculo Integral, levando ao desenvolvimento da Análise Matemática e da teoria das funções.
O cálculo integral se originou com problemas de quadratura e cubatura. Resolver um problema de quadratura significa encontrar o valor exato da área de uma região idimensional cuja fronteira consiste de uma ou mais curvas, ou de uma superfície tridimensional, cuja fronteira também consiste de pelo menos uma curva. Para um problema de cubatura, queremos determinar o volume exato de um sólido tridimensional limitado, pelo menos em parte, por superfícies curvas. Hoje, o uso do termo quadratura não mudou muito: matemáticos, cientistas e engenheiros comumente dizem que "reduziram um problema a uma quadratura", o que significa que tinham um problema complicado, o simplificaram de várias maneiras e agora o problema pode ser resolvido avaliando uma integral.
Historicamente, Hipócrates de Chios (cerca de 440 A.C.) executou as primeiras quadraturas quando encontrou a área de certas lunas, regiões que se parecem com a lua próxima do seu quarto crescente. Antiphon (cerca de 430 A.C.) alegou que poderia "quadrar o círculo" (isto é, encontrar a área de um círculo) com uma seqüência infinita de polígonos regulares inscritos: primeiro um quadrado; segundo um octógono, a seguir um hexadecaedro, etc., etc. Seu problema era o "etc., etc.". Como a quadratura do círculo de Antiphon requeria um número infinito de polígonos, nunca poderia ser terminada. Ele teria que ter usado o conceito moderno de limite para finalizar seu processo com rigor matemático. Mas Antiphon tinha o início de uma grande idéia agora chamado de método de exaustão. Mais de 2000 anos depois, creditamos a Eudoxo (cerca de 370 A.C.) o desenvolvimento do método de exaustão: uma técnica de aproximação da área de uma região com um número crescente de polígonos, com aproximações melhorando a cada etapa e a área exata sendo obtida depois de um número infinito destas etapas; esta técnica foi modificada para atacar cubaturas também.
Arquimedes (287--212 A.C.), o maior matemático da antiguidade,
...