ANÁLISE ATPS DE SINAIS E SISTEMAS
Resenha: ANÁLISE ATPS DE SINAIS E SISTEMAS. Pesquise 862.000+ trabalhos acadêmicosPor: kikolino • 8/11/2014 • Resenha • 2.723 Palavras (11 Páginas) • 296 Visualizações
ATPS ANÁLISE DE SINAIS E SISTEMAS
y” = 0
y”+16y = 0
y”+6y’+9y = 0
y”+16y’ = 0
y”+16y = 0 ; y(0) = 1 y’(0) = -4
y”+4y’+4y = 0 ; y(0) = 1 ; y’ = 0
y”+5y’+6y = 0 ; y(0)= 1 ; y’(0) = -1
y”+y’ = 0 ; y(0) = 2 ; y’(0) = -1
1) - y” = 0
a=1 x=(-0±√(0^2-4.1.o))/(2.1) y = C1e^0 + C2xe^0
b=0 y = C1 + C2x
c=0 x = 0
2) - y”+16y = 0
a=1 y=(-b±√(0^2-4.1.16))/2.1 α =0
b=0 y=(-b±√64)/2a β=j4
c=16 y=(-0±j8)/2
y = C1.e^αx.cos〖(βx)+C2e^(αx ) 〗 〖.sin〗〖(βx)〗
y = C1.e^0.cos〖(4x)+C2e^(0 ) 〗 〖.sin〗〖(4x)〗
y = C1.cos〖(4x)+C2〗 〖.sin〗〖(4x)〗
3) y”+6y’+9y = 0
a = 0 y =(-6±√(6^2-4.1.9))/2.1
b = 6 y =(-6±√0)/2.1
c = 9 y =-3
y=C1.e^r1x+C2.xe^r2x
y=C1.e^(-3x)+C2.xe^(-3x)
4) y’’+16y’ = 0
a = 1 y=(-b±√(〖16〗^2-4.1.0))/2.1 y=C1.e^0x+C2.e^(-16x)
b = 16 y=(-16±√(〖16〗^2 ))/2.1 y=C1.+C2.e^(-16x)
c = 0 y=(-16±16)/2.1
y1= 0 y2=-16
5) y’’+16y = 0 Condições : y(0) = 1 ; y’(0) = -4
a = 1 y=(-b±√(0^2-4.1.16))/2.1 α =0
b = 0 y=(-b±√64)/2a β=j4
c = 16 y = C1.e^αx.cos〖(βx)+C2e^(αx ) 〗 〖.sin〗〖(βx)〗
y = C1.e^0.cos〖(4x)+C2e^(0 ) 〗 〖.sin〗〖(4x)〗
y = C1.cos〖(4x)+C2〗 〖.sin〗〖(4x)〗
para y=(0)=1
C 1 cos〖(4.0)+C2 sin〖(4.0)〗 〗 =1 C1=1
y=1.cos〖(4x)+C2 sin〖(4x)〗 〗
y^'=-4 sin〖(4x)+C2.4 cos〖(4x)〗 〗
Para y=(0)=-4
-4 sin〖(4x)+C2.4 cos〖(4x)〗 〗 C2 = -1
-4 sin〖(4.0)+C2.4 cos〖(4.0)〗 〗=-4
y=1.cos〖(4x)-1 sin〖(4x)〗 〗
y=cos〖(4x)-sin〖(4x)〗 〗
6) y”+4y’+4y = 0 ; y(0) = 1 ; y’ = 0 Utilizando regra da cadeia
a = 1 □∆=(-4±√(4^2-4.1.4))/2.1 e^(-2x) = 〖(e〗^(u^' )).(v^') u= -2x
b = 4 ∆ = -2 〖 e〗^(u ).-2
c = 4 -2e^u
-2e^(-2x)
y=C1e^(-2.0)+C2xe^(-2.0) y^'=C1.(-2.e^(-2x))+C2(-2e^(-2x))
y=C1.1
...