Bem Localizado
Artigo: Bem Localizado. Pesquise 862.000+ trabalhos acadêmicosPor: HEYTORMOORE • 8/3/2015 • 871 Palavras (4 Páginas) • 249 Visualizações
Probabilidade
e
Estatística
Aplicadas
à
Engenharia
Atividade Estruturada 01
Renato Batista Da Silva
Matrícula – 201307044565
Curso – Engenharia Elétrica
Turma - 3007
Professor – Adalberto Nunes
Introdução à Estatística
A estatística é um conhecimento que se utiliza teorias de probabilidades para se explicar certos resultados, estudos e experimentos. A palavra estatística lembra, à maioria das pessoas, recenseamento. Os censos existem há milhares de anos e constituem um esforço imenso e caro feito pelos governos, com o objetivo de conhecer seus habitantes, sua condição socioeconômica, sua cultura, religião, etc. A estatística também é uma prática utilizada pelo indivíduo para conhecimento através de dados empíricos.
A estatística tem como finalidade recrutar, analisar e organizar dados para assim determinar e explicitar resultados. Baseia-se na teoria estatística, um ramo da matemática aplicada. Na teoria estatística, a aleatoriedade e incerteza são modeladas pela teoria da probabilidade. Algumas práticas estatísticas incluem, por exemplo, o planejamento, a sumarização e a interpretação de observações. A estatística é também comumente associada às pesquisas de opinião pública, aos vários índices governamentais, aos gráficos e às médias publicados diariamente na imprensa. Na realidade, entretanto, a estatística engloba muitos outros aspectos, sendo fundamental na análise de dados provenientes de quaisquer processos onde exista variabilidade. Porque o objetivo da estatística é a produção da "melhor" informação possível a partir dos dados disponíveis, alguns autores sugerem que a estatística é um ramo da teoria da decisão.
Podem ser citados alguns ramos em que a estatística é fundamental:
• Estatística Comercial
• Estatística Física
• Estatística Populacional
• Estatística Engenharia
• Estatística Econômica
Em estatística, uma variável é uma característica qualquer de interesse que associamos à população ou à amostra para ser estudada estatisticamente. São chamadas assim porque apresentam variação de elemento para elemento na população ou amostra de estudo. Variáveis podem ser classificadas da seguinte forma:
• Variáveis Quantitativas: são as características que podem ser medidas em uma escala quantitativa, ou seja, apresentam valores numéricos que fazem sentido. Podem ser contínuas ou discretas.
• Variáveis Discretas: características mensuráveis que podem assumir apenas um número finito ou infinito contável de valores, geralmente é o resultado de contagens. Exemplos: número de filhos em uma família, número de acidentes em um mês, número de bactérias por litro de leite, número de cigarros fumados por dia, número de clientes de um consultório. O número de batimentos cardíacos, por exemplo, só pode assumir valores inteiros (60,61,62...).
• Variáveis Contínuas: características mensuráveis que assumem valores em uma escala contínua (na reta real), para os quais valores fracionais fazem sentido. Usualmente devem ser medidas através de algum instrumento. Exemplos: peso (balança), altura (régua), tempo (relógio), pressão arterial, idade. Por exemplo, o peso é uma variável contínua, pois pode assumir qualquer valor (78,453437....Kg).
• Variáveis Qualitativas ou Categóricas: são as características que não possuem valores quantitativos, mas, ao contrário, são definidas por várias categorias, ou seja, representam uma classificação dos indivíduos. Podem ser nominais ou ordinais.
• Variáveis Nominais: não existe ordenação dentre as categorias. Exemplos: sexo, cor dos olhos, cor da pele, fumante/não fumante, doente/sadio.
• Variáveis Ordinais: existe uma ordenação entre as categorias, isto é, se pode dizer que uma categoria está antes da outra. Exemplos: escolaridade (1o, 2o, 3o graus), estágio da doença (inicial, intermediário, terminal), mês de observação (janeiro, fevereiro,..., dezembro).
Tabela de Frequências
Uma distribuição de frequência é um sumário tabular de dados que mostra a frequência que cada valor ou classe de valor distinto aparecem no conjunto de dados de uma variável. Muitas vezes, obtêm-se informações relevantes sobre uma variável através de uma distribuição de frequências. As tabelas de frequências contem os valores distintos da variável e as frequências correspondentes:
• Frequência absoluta (fa): número de vezes que o valor aparece no conjunto de dados.
• Frequência relativa (fr): proporção das observações que pertence à classe. Para um conjunto de dados com n observações, a
...