TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Calculo 2

Pesquisas Acadêmicas: Calculo 2. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  19/4/2013  •  857 Palavras (4 Páginas)  •  367 Visualizações

Página 1 de 4

Etapa 1

Passo 1

Velocidade instantânea

É a taxa de variação da posição de um corpo dentro de um intervalo de tempo infinitesimal (na prática, instantâneo). Define-se velocidade instantânea ou simplesmente velocidade como sendo:

Podemos falar também de uma rapidez instantânea, que seria o módulo do vetor velocidade em um dado instante de tempo .

Passo 2

Aceleração média e instantânea

Aceleração é a taxa de variação da velocidade de um corpo em um dado intervalo de tempo. Assim como a velocidade, ela apresenta suas interpretações em situações mais globais (aceleração média) e em situações mais locais (aceleração instantânea). Elas são definidas como:

(aceleração média)

(aceleração instantânea)

* Velocidade instantânea

Fica claro que, quanto menor é o intervalo de tempo t2 - t1, mais precisa é a descrição dada pela velocidade média. Se o tempo for de dez anos, alguém podería ter conhecido o mundo todo antes de voltar para casa nesse período (e parecería à velocidade média que ele quase não se deslocou). Mas se o tempo foi de um segundo, a pessoa não pode ter feito tanta coisa assim. Isso nos leva a desejar a formulação do conceito de "velocidade instantânea", ou seja, algo análogo à velocidade média, mas com uma precisão infinita. Para aumentar a precisão da velocidade, é preciso considerar tempos cada vez menores, ou seja, valores de t2 arbitrariamente próximos de t1. Assim, usamos a operação matemática conhecida como "limite": a velocidade instantânea é o limite da velocidade média quando t2 tende a t1. Ou seja:

A operação acima descrita é chamada uma "derivada". Se temos uma função qualquer f(t), então a derivada de f(t) no ponto t1 é:

Ou, se definirmos t2 = t1+h,

Assim, fica claro que a velocidade instantânea v(t1) é a derivada da função x(t) no ponto t1. Ou seja, A velocidade instantânea é a derivada temporal da posição.

Em outras palavras, a velocidade é a taxa de variação da posição: quanto maior a velocidade, mais rápido a posição varia. Se a velocidade for positiva, a posição muda no sentido que foi definido como positivo para a posição (veja a seção "Partículas e o movimento sobre uma reta") . Se for negativa, a posição muda no sentido inverso: o que foi definido negativo para a posição.

* Relação entre velocidade média e velocidade instantânea

Este trecho supõe que o leitor entenda o conceito de integral. A partir da equação

Podemos integrar os dois lados em relação a t, de modo a obter

Com a condição v(0) = v0, fica claro que C = v0, ou seja

E sabemos que

Então, integrando os dois últimos membros, temos

Agora, substituindo isso na definição da velocidade média

Também podemos exprimir este resultado em relação à velocidade instantânea.

Que é uma relação interessante, e expande o significado físico da velocidade média.

Etapa 2

Passo 1

Constante de Euler-Mascheroni

A constante de Euler-Mascheroni é uma constante matemática com múltiplas utilizações em Teoria dos números. Ela é definida como olimite da diferença entre a série harmônica e o logaritmo natural.

que pode ser condensada assim :

em que E(x) é a parte inteira de x.

A demonstração da existência de um tal limite pode ser feita pela aplicação do método da comparação série-integral.

As aplicações da constante incluem sua relação com a função gama e a fórmula da reflexão de Euler, além da relação com a função zeta de Riemann e com integrais e integrações impróprias

...

Baixar como (para membros premium)  txt (5.7 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com