Calculo 3
Dissertações: Calculo 3. Pesquise 862.000+ trabalhos acadêmicosPor: • 6/9/2014 • 412 Palavras (2 Páginas) • 240 Visualizações
Integrais indefinidas
Da mesma forma que a adição e a subtração, a multiplicação e a divisão, a operação inversa da derivação é a antiderivação ou integração indefinida.
Dada uma função g(x), qualquer função f'(x) tal que f'(x) = g(x) é chamada integral indefinida ou antiderivada de f(x).
Exemplos:
1. Se f(x) = , então é a derivada de f(x). Uma das antiderivadas de f'(x) = g(x) = x4 é .
2. Se f(x) = x3, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3.
3. Se f(x) = x3 + 4, então f'(x) = 3x2 = g(x). Uma das antiderivadas ou integrais indefinidas de g(x) = 3x2 é f(x) = x3 + 4.
Nos exemplos 2 e 3 podemos observar que tanto x3 quando x3+4 são integrais indefinidas para 3x2. A diferença entre quaisquer destas funções (chamadas funções primitivas) é sempre uma constante, ou seja, a integral indefinida de 3x2 é x3+C, onde C é uma constante real.
Propriedades das integrais indefinidas
São imediatas as seguintes propriedades:
1ª. , ou seja, a integral da soma ou diferença é a soma ou diferença das integrais.
2ª. , ou seja, a constante multiplicativa pode ser retirada do integrando.
3ª. , ou seja, a derivada da integral de uma função é a própria função.
Integração por substituição
Seja expressão .
Através da substituição u=f(x) por u' = f'(x) ou , ou ainda, du = f'(x) dx, vem:
,
admitindo que se conhece .
O método da substituição de variável exige a identificação de u e u' ou u e du na integral dada.
INTEGRAIS DEFINIDAS
Seja uma função f(x) definida e contínua num intervalo real [a, b]. A integral definida de f(x), de a até b, é um número real, e é indicada pelo símbolo:
onde:
• a é o limite inferior de integração;
• b é o limite superior de integração;
• f(x) é o integrando.
Se representa a área entre o eixo x e a curva f(x), para
Se representa a área entre as curvas, para
http://www.somatematica.com.br/superior/integrais/integrais.php
http://www.somatematica.com.br/superior/integrais/integrais2.php
...