TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Calculo 3

Monografias: Calculo 3. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  27/9/2014  •  527 Palavras (3 Páginas)  •  218 Visualizações

Página 1 de 3

TEXTO DA ETAPA 1

O surgimento do Cálculo Diferencial Integral

O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração.

O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.

Historicamente, Newton foi o primeiro a aplicar o cálculo à analogias com somas e diferenças. Por exemplo, para o teorema fundamental do cálculo, se fosse dada uma sequência finita de números tais como: y,0,1,8,27,64,125 e 216, com diferenças y:1,7,19,37,61 e 89, ele notou que a soma das diferenças, y= (1-0)+

(8-1)+(27-8)+......(216-125), alternavam-se em torno da diferença entre o primeiro e o último valor de y, 216-0. Já para Leibniz, uma curva era um polígono feito de um número infinito de lados, cada um com comprimento ”infinitesimal”.

Leibniz escreveu em 1680, “Eu represento a área de uma figura pela soma infinita de todos os retângulos limitados pelas ordenadas e diferenças das abscissas”, isto é, como ò ydx. Então, “elevando a alturas maiores”, baseando-se na analogia com somas finitas e diferenças, afirmou que ao encontrar a área representada por ò ydx, deve-se encontrar uma curva Y tal que as ordenadas y são diferenças de Y, ou y = dY. Em tempos modernos, Y é nossa antiderivada, e assim, Leibniz formulou uma afirmação inicial da parte 1 do Teorema Fundamental do Cálculo.

TEXTO DA ETAPA 2

A utilização desta fórmula para melhorar o processo de integração implica na necessidade de uma breve explanação, o processo consiste em observar a função a ser integrada como sendo uma integral , ou seja, devemos separar a função em duas partes: uma, chamamos de u, que consideraremos função primitiva e outra dv que será uma diferencial, desta forma, faremos a integração da parte dv para encontrar v e depois subtrairemos a integral da mesma com relação a diferencial de u: du. Parece um tanto incomum a princípio, porém após o hábito no uso da técnica, esta se torna muito útil.

Outro fato deve ser explorado: como o processo demanda a integração da diferencial dv nos vem a questão sobre a necessidade de utilização da constante de antidiferenciação C, portanto façamos a verificação da fórmula utilizando-a:

Se ,

Ou seja, a constante é dispensável para o cálculo da integral que resulta em v.

Considere a seguinte integral:

A substituição consiste simplesmente em aplicar uma mudança de variáveis , onde é uma função qualquer contínua no domínio de integração. Fazendo:

Esta técnica, que é fruto da regra da cadeia para derivadas, é muito útil

...

Baixar como (para membros premium)  txt (3.4 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com