Calculo
Pesquisas Acadêmicas: Calculo. Pesquise 862.000+ trabalhos acadêmicosPor: fossile • 17/3/2015 • 434 Palavras (2 Páginas) • 212 Visualizações
Velocidade instantânea: ao trafegar em uma estrada você pode observar no velocímetro do carro que a velocidade indicada varia no decorrer do tempo. Esta velocidade que você lê no velocímetro em um determinado instante é denominada velocidade instantânea. Para determinar esta velocidade tem-se que calcular o limite de ( S/ t), para t tendendo a zero; Já observamos que o conceito de velocidade média está associado a dois instantes de tempo. Por exemplo, t1 e t2. E escrevemos v (t1,t2) para o módulo dessa velocidade média.
Por outro lado, concluímos que o módulo da velocidade média entre esses instantes de tempo pode ser obtido a partir do segmento de reta secante ao gráfico da posição em função do tempo. Esse segmento de reta deve ligar os pontos A e B do gráfico, pontos estes que correspondem aos instantes de tempo t1 e t2 .
Exemplo: Função x = 4 t²+ t3 + 7t – 8
Montar uma tabela, usando seu exemplo acima, com os cálculos e plotenum gráfico as funções S(m) x t(s) e V(m/s) x t(s) para um intervalo entre 0 a 5s, diga que tipo de função você tem e calcular a variação do espaço percorrido e a variação de velocidade para o intervalo dado.
Calcular a área formada pela função da velocidade, para o intervalo dado acima.
Gráfico s(m) x t(s) x = 4.x t²+ + t3 + 7t – 8
Gráfico v(m) x t(s) v = 8x+3t²+7
Passo 3
Pesquisar sobre a aceleração instantânea de um corpo móvel, que define a aceleração como sendo a derivada da função velocidade.
Explicar o significado da aceleração instantânea a partir da função s (espaço), mostrando que é a aceleração é a derivada segunda.
Utilizar o exemplo do Passo 1 e mostrar quem é a sua aceleração a partir do conceito de derivação aplicada a sua função espaço e função velocidade.
Aceleração instantânea da partícula no instante t é o limite dessa razão quando Δt tende a zero. Representando a aceleração instantânea por ax, temos então:
A aceleração de uma partícula em qualquer instante é a taxa na qual sua velocidade está alterando naquele instante. A aceleração instantânea é a derivada da velocidade em relação ao tempo: a = dv dt. Vamos derivar a equação da velocidade instantânea para obter a aceleração instantânea. Função da velocidade em um determinado instante.
V=V0¹-¹ + a*t¹-¹
V=1*V0¹-¹ + 1*a*t¹-¹
a=a
Podemos observar que a derivada da velocidade instantânea resulta direto na aceleração.
Passo 4
Plotar num gráfico sua função a(m/s2) x t(s) para um intervalo de 0 a 5 segundos e dizer que tipo de função você tem.
Gráfico aceleração a(m/s²) x t(s) a=8+6t
Etapa 2
Aula-tema: Conceito de Derivadas e Regras de Derivação
Passo1
...