TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Calculo III

Casos: Calculo III. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  21/11/2014  •  2.852 Palavras (12 Páginas)  •  216 Visualizações

Página 1 de 12

Etapa 1.

(Passo 1)

O Cálculo Diferencial e Integral, também chamado de cálculo infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.

O Cálculo Integral é o estudo das definições, propriedades, e aplicações de dois conceitos relacionados, as integrais indefinidas e as integrais definidas. O processo de encontrar o valor de uma integral é chamado integração. Em linguagem técnica, o calculo integral estuda dois operadores lineares relacionados.

A integral indefinida é a antiderivada, o processo inverso da derivada. F é uma integral indefinida de f quando f é uma derivada de F. (O uso de letras maiúsculas e minúsculas para uma função e sua integral indefinida é comum em cálculo.)

A integral definida insere uma função e extrai um número, o qual fornece a área entre o gráfico da função e o eixo do x. A definição técnica da integral definida é o limite da soma das áreas dos retângulos, chamada Soma de Riemann.

O método que temos para o cálculo da área ou da integral definida, no caso, é ainda muito complicado, conforme vimos no exemplo anterior, pois encontraremos somas bem piores.

Para tal, consideremos a área das figuras quando movemos a extremidade direita:

Se a área é dada por A(x), então A(a) = 0, pois não há área alguma. Já A(x) dá a área da figura 1, A(b), a área entre ou seja:

ou seja, A(x) é uma das antiderivadas de f(x). Mas sabemos que se F(x) é antiderivada qualquer de f(x), então A(x) = F(x) + C. Fazendo x = a, temos: A(a) = F(a) + C = 0 (A(a) = 0)

Logo, C = - F(a) e A(x) = F(x) - F(a).

Portanto:

ou ainda,

A história do surgimento da Integral

O cálculo integral se originou com problemas de quadratura e curvatura. Resolver um problema de quadratura significa encontrar o valor exato da área de uma região bidimensional cuja fronteira consiste de uma ou mais curvas, ou de uma superfície tridimensional, cuja fronteira também consiste de pelo menos uma curva.

Quadraturas que fascinavam os geômetras eram as de figuras curvilíneas, como o círculo, ou figuras limitadas por arcos de outras curvas. As lúnulas regiões que se assemelham com a lua no seu quarto crescente foram estudadas por Hipócrates de Chios, 440 a.C. , que realizou as primeiras quadraturas da História. Antifon, por volta de 430 a.C., procurou encontrar a quadratura do círculo através de uma sequencia infinita de polígonos regulares inscritos: primeiro um quadrado, depois um octógono, em seguida um hexadecágono, e assim por diante. Havia, entretanto, um problema: essa sequencia nunca poderia ser concluída. Apesar disso, essa foi uma ideia genial que deu origem ao método da exaustão.

Nesse contexto, uma das questões mais importantes, e que se constituiu numa das maiores contribuições gregas para o Cálculo, surgiu por volta do ano 225 a.C. Trata-se de um teorema de Arquimedes para a quadratura da parábola. Arquimedes descobriu que a área da região limitada por uma parábola cortada por uma corda qualquer, é igual a 4/3 da área do triângulo que tem a mesma altura e que tem a corda como base.

Arquimedes gerou também uma soma com infinitos termos, mas ele conseguiu provar rigorosamente o seu resultado, evitando, com o método da exaustão, a dificuldade com a quantidade infinita de parcelas. Este é o primeiro exemplo conhecido de soma infinita que foi resolvido.

Outras "integrações" foram realizadas por Arquimedes a fim de encontrar o volume da esfera e a área da superfície esférica, o volume do cone e a área da superfície cônica, a área da região limitada por uma elipse, o volume de um paraboloide de revolução e o volume de um hiperboloide de revolução. Em seus cálculos, Arquimedes encontrava somas com um número infinito de parcelas. Basicamente, se não podia ser nem maior, nem menor, tinha que ser igual.

A contribuição seguinte para o Cálculo Integral apareceu somente ao final do século XVI quando a Mecânica levou vários matemáticos a examinar problemas relacionados com o centro de gravidade.

Os próximos matemáticos que tiveram grande contribuição para o nascimento do Cálculo Integral foram Fermat e Cavalieri. Em sua obra mais conhecida (geometria

cada uma das, então chamadas, "parábolas maiores": curvas do tipo , onde é constante e n=2, 3,4, etc. Empregou então uma série geométrica para fazer o mesmo para cada uma das curvas do tipo , onde e n=-2, -3, -4,etc. Por volta de 1640, a fórmula geral da integral das parábolas maiores era conhecida por Fermat, Blaise, Pascal, Descartes, Torricelli e outros.

O problema do movimento estava sendo estudado desde a época de indivisibilibus continuo rum), Cavalieri desenvolveu a ideia de Kepler sobre quantidades infinitamente pequenas. Aparentemente, Cavalieri pensou na área como uma soma infinita de componentes ou segmentos “indivisíveis”. Ele mostrou, usando os seus métodos, o que hoje em dia escrevemos: .

Fermat desenvolveu uma técnica para achar a área sob Galileo. Tanto Torricelli como Barrow consideraram o problema do movimento com velocidades variadas. A derivada da distância era a velocidade e a operação inversa, partindo da velocidade, levava à distância. A partir desse problema envolvendo movimento, a ideia de operação inversa da derivada desenvolveu-se naturalmente e a ideia de que a integral e a derivada eram processos inversos era familiar a Barrow. Embora Barrow nunca tenha enunciado formalmente o Teorema fundamental do Calculo, estava trabalhando em direção a esse resultado; foi Newton, entretanto, quem, continuando na mesma direção, formulou o teorema. Newton continuou os trabalhos de Barrow e Galileo sobre o estudo do movimento dos corpos e desenvolveu o Cálculo aproximadamente dez anos antes de Leibniz.

...

Baixar como (para membros premium)  txt (17.3 Kb)  
Continuar por mais 11 páginas »
Disponível apenas no TrabalhosGratuitos.com