Comprovação Da Lei De Hooke
Pesquisas Acadêmicas: Comprovação Da Lei De Hooke. Pesquise 861.000+ trabalhos acadêmicosPor: abel.junior • 23/11/2013 • 1.076 Palavras (5 Páginas) • 727 Visualizações
1. INTRODUÇÃO
Em 1660 o físico inglês R. Hooke (1635-1703), observando o comportamento mecânico de uma mola, descobriu que as deformações elásticas obedecem a uma lei muito simples. Hooke descobriu que quanto maior fosse o peso de um corpo suspenso a uma das extremidades de uma mola (cuja outra extremidade era presa a um suporte fixo) maior era a deformação (no caso: aumento de comprimento) sofrida pela mola. Analisando outros sistemas elásticos, Hooke verificou que existia sempre proporcionalidade entre força deformante e deformação elástica produzida. Pôde então enunciar oresultado das suas observações sob forma de uma lei geral. Tal lei, que é conhecida atualmente como lei de Hooke, e que foi publicada por Hooke em 1676.
A Lei de Hooke é uma lei de física que está relacionada à elasticidade de corpos e também serve para calcular a deformação causada pela força que é exercida sobre um corpo, sendo que tal força é igual ao deslocamento da massa partindo do seu ponto de equilíbrio multiplicada pela constante da mola ou de tal corpo que virá à sofrer tal deformação.
F=K.Δl
Notando que segundo o Sistema Internacional:
F está em newtons
K está em newton/metro
Δl está em metros
A Lei de Hooke é uma lei muito importante quando tratamos de resistência e comportamento dos materiais. Basicamente, estudamos tal Lei em quase todos os cursos de Engenharia, porém podemos destacar a Engenharia Civil e a Mecânica com as principais aplicações.
2. OBJETIVO
• Interpretar um gráfico força deformante x elongação
• Enunciar a lei de Hooke
• Concluir sobre a validade da lei de Hooke
• Descrever o funcionamento de um dinamômetro a partir de Hooke
3. FUNDAMENTAÇÃO TEÓRICA
A lei de Hooke consiste basicamente na consideração de que uma mola possui uma constante elástica k. Esta constante é obedecida até um certo limite, onde a deformação da mola em questão se torna permanente. Dentro do limite onde a lei de Hooke é válida, a mola pode ser comprimida ou elongada, retornando a uma mesma posição de equilíbrio.
Analiticamente, a lei de Hooke é dada pela equação:
F = -k.x
Neste caso, temos uma constante de proporcionalidade k e a variável independente x. A partir da equação pode se concluir que a força é negativa, ou seja, oposta a força aplicada. Segue que, quanto maior a elongação, maior é a intensidade desta força, oposta a força aplicada.
Veja o gráfico da lei de Hooke:
Note que as linhas em vermelho são as linhas que representam a força aplicada. Para a elongação da mola, ela é positiva, enquanto que para a compressão da mola, ao longo do sentido negativo do eixo x, esta força assume valores negativos. Já a força de reação oferecida pela mola assume valores negativos para a elongação e valores positivos para a compressão. Isso é muito fácil de observar cotidianamente. É só colocar uma mola presa a um suporte, de modo que possa ser elongada ou comprimida na horizontal, conforme a figura 02.
Note que quando é aplicada uma força no sentido positivo do eixo x, a mola reagirá aplicando uma força de igual intensidade, porém sentido contrário. No caso da compressão, a força aplicada é negativa, e a força de reação acaba por ser positiva, sempre contrária à força aplicada.
4. MATERIAL UTILIZADO
• 1 perfil universal com suporte móvel, escala milimetrada e tripé
• 3 molas helicoidais
• 1 conjunto gancho-lastro e 3 massas.
5. MÉTODO
1º. Na parte inferior do gancho-lastro, marcamos um valor na escala que foi arbitrado como zero.
2º. Medimos as massas que representaram as forças que deformaram a mola:
Massa 1= 0,0495 kg;
Massa 1 + 2+ = 0,0984 kg;
Massa 1 + 2 + 3 = 0,1482 kg
Utilizando g = 9,81 m/s², calculamos as forças aplicadas às molas:
Peso 1 = 0,49 N
Peso 1 + 2 = 0,97 N
Peso 1 +2 + 3 = 1,45 N
3º. Preenchemos a tabela 1 com a força e elongação correspondentes
FORÇA
(N) VERMELHA PRETA AMARELA
X
...