Conceito de Matemática aplicada
Projeto de pesquisa: Conceito de Matemática aplicada. Pesquise 862.000+ trabalhos acadêmicosPor: bianchim • 1/10/2013 • Projeto de pesquisa • 843 Palavras (4 Páginas) • 529 Visualizações
Universidade Anhanguera Educacional Jundiaí
Curso de Tecnologia em Matemática aplicada
ALESSANDRA DE OLIVEIRA LÔ- RA:6506256368
HELAINE RODRIGUES OLIVEIRA- RA:6968461146
VANESSA SILVA NASCIMENTO LEITE- RA: 6787403709
HUANG SHU CHI-RA:6377217855
LUIS GUILHERME ALVES BARBOSA- RA: 6578311122
SAMARA AMÉLIA MOSCA- RA:7125504301
“Conceito de matemática Aplicada”
Jundiaí, SP
Agosto de 2013
ALESSANDRA DE OLIVEIRA LÔ- RA:6506256368
HELAINE RODRIGUES OLIVEIRA- RA:6968461146
VANESSA SILVA NASCIMENTO LEITE- RA: 6787403709
HUANG SHU CHI-RA:6377217855
LUIS GUILHERME ALVES BARBOSA- RA: 6578311122
SAMARA AMÉLIA MOSCA- RA:7125504301
“Conceito de Matemática aplicada”
Atividade prática supervisionada apresentada como requisito de avaliação na disciplina de Matemática aplicada no Curso de Processos Gerenciais da Universidade Anhanguera Educacional Jundiaí, turma noturna, sob a orientação do(a) Prof.(a).Tiago Monteiro Veloso.
Jundiaí, SP
Agosto de 2013
Sumário
INTRODUÇÃO
A matemática nos trouxe uma enorme contribuição á administração nos permitindo novas técnicas de planejamento e controle no emprego de recursos materiais, financeiros e humanos. A matemática desenvolveu a aplicação de técnicas bem avançadas para instrumentalizar a administração, ajudando assim na tomada de decisões otimizando a execução de trabalhos e diminuindo os riscos envolvidos nos planos que afetam o futuro a curto ou longo dentro da empresa, pois neste trabalho efetuaremos a aplicação de nossos conhecimentos nos exercícios.
1°Exercício
Função:
Determinar o custo quando são produzidas 0, 5, 10, 15 e 20 unidades deste insumo.
Basta calcular os valer de quando
Esboçar o gráfico da função
R.:
Qual é o significado do valor encontrado para , quando ?
R.: Note que , e que este valor é o custo inicial para a produção deste insumo, pois neste momento se tem 0 unidades produzidas, e o pago é 60, logo este é o valor inicial para o custo.
A função é crescente ou decrescente? Justificar.
R.: como o valor de q é sempre positivo (não se pode ter unidades negativas neste caso), como têm sempre unidades positivas, quanto maior for o valor de q, maior será o valor de , então a função é sempre crescente.
Como 3 é positivo, então a função é sempre crescente.
A função é limitada superiormente? Justificar.
Não, por ser uma reta, e a função ser sempre crescente, jamais poderá ser encontrado um valor limitante superior para .
2° O consumo de energia elétrica para uma residência no decorrer dos meses é dado por
E t 2 8t 210 , onde o consumo E é dado em kWh, e ao tempo associa-se t 0 para
Janeiro, t 1 para fevereiro, e assim sucessivamente.
a) Determinar o (s) mês (es) em que o consumo foi de 195 kWh.
b) Determinar o consumo médio para o primeiro ano.
c) Com base nos dados obtidos no item anterior, esboçar o gráfico de E.
d) Qual foi o mês de maior consumo? De quanto foi esse consumo?
e) Qual foi o mês de menor consumo? De quanto foi esse consumo?
Mês Ref. T Consumo
...