ETAPA № 3 Aula-tema: Trabalho E Energia. Esta Atividade é Importante Para Que Você Aprenda Como Calcular A Energia De Um Sistema De Partículas E Aplicar O Teorema Do Trabalho E Energia Cinética A Esse Sistema. Além Disso, Você Poderá Comparar O
Exames: ETAPA № 3 Aula-tema: Trabalho E Energia. Esta Atividade é Importante Para Que Você Aprenda Como Calcular A Energia De Um Sistema De Partículas E Aplicar O Teorema Do Trabalho E Energia Cinética A Esse Sistema. Além Disso, Você Poderá Comparar O. Pesquise 862.000+ trabalhos acadêmicosPor: maurojose • 19/5/2013 • 980 Palavras (4 Páginas) • 1.633 Visualizações
ETAPA № 3
Aula-tema: Trabalho e Energia.
Esta atividade é importante para que você aprenda como calcular a energia de um sistema de partículas e aplicar o teorema do trabalho e energia cinética a esse sistema. Além disso, você poderá comparar os resultados da mecânica clássica com a mecânica relativística. Espera-se que você perceba qual é o limite de validade da aproximação clássica da mecânica e quais são os fatores mais importantes para definir o limite de aplicação de um modelo.
Passo 1 – Determine quais seriam os valores de energia cinética Ec de cada próton de um feixe acelerado no LHC, na situação em que os prótons viajam as velocidades: v1 = 6,00×107 m/s (20% da velocidade da luz), v2 = 1,50×108 m/s (50% da velocidade da luz) ou v3 = 2,97×108 m/s (9% da velocidade da luz). Atenção: Cuidado com os erros de arredondamento!
Passo 2 – Sabendo que para os valores de velocidade do Passo 1, o cálculo relativístico da energia cinética nos dá: Ec1 = 3,10×10-12 J, Ec2 = 2,32×10-1 J e Ec3 = 9,14×10-10 J, respectivamente; determine qual é o erro percentual da aproximação clássica no cálculo da energia cinética em cada um dos três casos. O que você pode concluir? icaRelativístc Clássica c E
E Erro
Passo 3 – Considerando uma força elétrica Fe = 1,0 N (sobre os 1×1015 prótons do feixe), na situação sem atrito, determine qual é o trabalho W realizado por essa força sobre cada próton do feixe, durante uma volta no anel acelerador, que possui 27 km de comprimento.
Passo 4 – Determine qual é o trabalho W realizado pela força elétrica aceleradora Fe, para acelerar cada um dos prótons desde uma velocidade igual a 20% da velocidade da luz até
50% da velocidade da luz, considerando os valores clássicos de energia cinética, calculados no Passo 1. Determine também qual é a potência média total P dos geradores da força elétrica (sobre todos os prótons), se o sistema de geração leva 5 µs para acelerar o feixe de prótons de
20% a 50% da velocidade da luz.
Engenharia – 2ª Série – Física I
Adriana de Oliveira Delgado 8
ETAPA № 4
Aula-tema: Momento Linear e Impulso.
Esta atividade é importante para que você aprenda a determinar o centro de massa de um sistema de partículas. Você deverá também usar os princípios de conservação da energia cinética e do momento linear para resolver matematicamente a colisão que ocorre entre dois feixes acelerados no LHC.
As informações de massa, velocidade, momento linear e energia são importantíssimas no estudo científico. A partir do instante em que ocorre a colisão entre os dois feixes acelerados, uma série de fenômenos físicos altamente energéticos é desencadeada e, através da detecção das partículas emitidas após a colisão, os cientistas conseguem estudar a explosão inicial do Universo.
Nesse e nos próximos passos iremos trabalhar na condição em que todos os feixes possuem velocidades de até 20% da velocidade da luz, para que possamos aplicar os cálculos clássicos de momento e energia, sem cometer um grande erro nos cálculos.
Passo 1 – Determine a posição do centro de massa do sistema composto por um feixe de prótons (P) que irá colidir com um feixe de núcleos de chumbo (Pb), no interior do detector ATLAS, supondo que ambos os feixes se encontram concentrados nas extremidades opostas de entrada no detector, com uma separação de 46 m entre eles. O feixe de prótons possui
1×1015 prótons, enquanto o de chumbo possui 3×1013 núcleos. Lembre-se que a massa de cada núcleo de chumbo vale 207 vezes
...