Força Elastica
Trabalho Universitário: Força Elastica. Pesquise 861.000+ trabalhos acadêmicosPor: tcheus • 1/12/2014 • 528 Palavras (3 Páginas) • 220 Visualizações
Equilíbrio com uma força elástica
Para compreender força elástica basta entender uma coisa, cada mola tem um coeficiente de restituição a constante elástica (k), que depende do material de que a mola é feita e de suas dimensões sendo constante independente do grau de distorção da mola.
Fel=-kx
No caso unidimensional, pode-se escrever a componente da força exercida pela mola sobre o corpo acoplado a ela como.
Que se conhece como lei de Hooke. A constante elástica da mola (k) é medido em Newton por metro (N/m).É uma medida da força necessária para distender uma mola de determinado valor,molas rígidas têm maiores valores de k. A equação é válida desde que não de destinada a mola além de uma faixa limitada.
O sinal negativo indica que o sentido da força exercida pela mola é sempre oposto a deslocamento do corpo de da sua posição quando a mola está em seu estado relaxado (que é definido x=0).
Considerando uma massa m pendurada na extremidade de uma mola suspenso na vertical. Então F será igual ao peso da massa, o que resulta na equação 2:
Pel=-kx (2)
Metodologia.
Prende-se a mola, na vertical, por uma de suas extremidades, a um suporte fixo. Na outra extremidade suspende-se, um corpo de massa m conhecida. É sabido que para uma certa faixa de comprimentos, a mola tem um comportamento elástico, no qual a força feita pela mola segue a equação: k=p/x onde: k é a constante elástica da mola, p Peso em N, x é o comprimento. Fazendo-se variar a massa m do corpo suspenso na vertical e medindo-se a variação do comprimento da mola x, podemos verificar a relação existente entre a variação do peso e a variação do comprimento. Usa-se a mesma equação e o mesmo procedimento para molas em paralelo.
Materiais Utilizados.
Duas molas.
Pesos de chumbo.
Uma régua.
Um suporte.
Experimento Força Elástica.
Foi posicionado a régua de modo que o pequeno anel inferior da mola coincida com o traço da régua. Com isso
Foi posicionado a régua de modo que a pequeno anel inferior da mola coincida com o traço da régua. Com isso foi marcado a deformação da mola
Calculando o valor da área obtemos que ela foi de:
Foi posicionado a régua de modo que a pequeno anel inferior da mola coincida com o traço da régua. Com isso foi marcado a deformação da mola
Conclusão
Através de um sistema no qual diferentes molas foram presas a massas suspensas distintas, o objetivo era calcular as constantes elásticas das molas através da dedução de expressões obtidas a partir de medições experimentais. O processo se restringiu a pequenos deslocamentos das molas, já que apenas dessa pode-se relacionar linearmente as grandezas envolvidas.
No primeiro caso as molas não oscilavam, cada uma foi submetida
...