TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Funcoes

Seminário: Funcoes. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  26/8/2013  •  Seminário  •  1.005 Palavras (5 Páginas)  •  320 Visualizações

Página 1 de 5

O estudo do produto cartesiano serviu de base para aprendermos sobre as relações. Estas agora são o alicerce para o estudo das funções, por isto, para que você assimile melhor este conceito, é importante que você revise os tópicos sobre produto cartesiano e relações.

As funções nada mais são que um tipo particular de relação que possuem uma propriedade específica.

Para iniciarmos o estudo das funções vamos começar analisando a relação , cujo diagrama de flechas pode ser visto ao lado:

Observe que todos os elementos do conjunto A possuem uma flecha em direção a um único elemento do conjunto B.

Em outras palavras, não há no conjunto A qualquer elemento que não esteja associado a um elemento do conjunto B e os elementos de A estão associados a apenas um elemento de B.

Por possuir tal propriedade, dizemos que esta relação é uma função f de A em B representada por:

Domínio da Função

Ao conjunto A damos o nome de domínio da função.

O domínio é o conjunto de partida. Ele composto de todos os elementos do conjunto de partida.

Neste nosso exemplo o domínio da função f é representado por D(f) = { -3, 0, 3 }, ou seja, o domínio desta função contém todos os elementos do conjunto A.

Como supracitado, para que tenhamos uma função, todos os elementos do domínio devem estar associados a um e somente um dos elementos de B.

Contradomínio da Função

Ao conjunto B damos o nome de contradomínio da função.

O contradomínio é o conjunto de chegada. Ele composto de todos os elementos do conjunto de chegada.

Em nosso exemplo o contradomínio da função f é representado por CD(f) = { 0, 9, 18 }, isto é, o contradomínio desta função contém todos os elementos do conjunto B.

Segundo o conceito de função não é necessário que todos os elementos de B estejam relacionados aos elementos do domínio. Note que no conjunto B o elemento 18 não recebe nenhuma flecha, isto é, não está relacionado a qualquer elemento de A.

Uma outra coisa que deve ser observada é que em uma função os elementos do contradomínio podem receber mais de uma flechada, se associando, portanto, a mais de um elemento do domínio. Como exemplo temos o elemento 9 que está associado aos elementos do domínio -3 e 3.

Imagem da Função

A imagem da função dependendo do caso é o próprio contradomínio, ou então é um subconjunto seu.

Os elementos do conjunto imagem são todos os elementos do contradomínio que estão associados a algum elemento do domínio. No exemplo que estamos utilizando o conjunto imagem é representado por Im(f) = { 0, 9 }, pois 0 e 9 são todos os elementos do CD(f) que estão associados a algum elemento do D(f).

Em resumo para a função de exemplo temos:

Domínio da Função: D(f) = { -3, 0, 3 }

Contradomínio da Função: CD(f) = { 0, 9, 18 }

Conjunto Imagem da Função: Im(f) = { 0, 9 }

Nesta função exemplo o conjunto imagem é um subconjunto do contradomínio, pois o elemento 18 de B não está contido no conjunto imagem, por não estar associado a nenhum elemento do domínio.

Definição de uma Função

Esta função f de A em B, , é definida como:

Ou ainda como:

Veja também que representamos f(x) ou y em função de x. A variável f(x) ou y é chamada de variável dependente, pois depende de x, já a variável x é chamada de variável independente, pois independentemente de y, pode representar qualquer elemento do domínio.

A definição da função leva em conta tanto o domínio quanto do contradomínio, relacionando-os. O conjunto imagem Im(f), depende não só da regra de associação, no caso f(x) = x2, como também do D(f) e do CD(f).

Omissão do Domínio e do Contradomínio na Definição de uma Função

É provável

...

Baixar como (para membros premium)  txt (6 Kb)  
Continuar por mais 4 páginas »
Disponível apenas no TrabalhosGratuitos.com