TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Funções Trigonométricas.

Pesquisas Acadêmicas: Funções Trigonométricas.. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  8/4/2013  •  1.037 Palavras (5 Páginas)  •  638 Visualizações

Página 1 de 5

Funções Trigonométricas.

A palavra trigonometria é formada por três radicais gregos: tri(três), gono (ângulos) e metron (medida); significando assim "medida dos triângulos".

Inicialmente considerada como uma extensão da geometria, a trigonometria já era estudada pelos babilônios, que a utilizavam para resolver problemas práticos de Astronomia, de Navegação e de Agrimensura. Aliás, foram os astrônomos como o grego Hiparco (190 aC – 125 aC), considerado o pai da Astronomia e da Trigonometria, que estabeleceu as primeiras relações entre os lados e os ângulos de um triângulo retângulo.

No século VIII com o apoio de trabalhos hindus, matemáticos árabes contribuíram notavelmente para o avanço da trigonometria. Este avanço continuou após a construção da primeira tábua trigonométrica, por um matemático alemão, nascido em Baviera, chamado Purback. Porém o primeiro trabalho matemático sobre trigonometria foi o "tratado dos triângulos", escrito pelo matemático alemão Johann Müller, também chamado Regiomontanus.

Atualmente a trigonometria não se limita apenas a estudar triângulos. Sua aplicação se estende na outros campos da matemática, como a Análise, e a outros campos da atividade humana como a Eletricidade, a Mecânica, a Acústica, a Música, a Topologia, a Engenharia Civil, etc.

Função seno:

Chamamos de função seno a função f(x) = sen x

O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do seno, –1 £ sen x £ 1, ou seja:

Domínio de f(x) = sen x; D(sen x) = R.

Imagem de f(x) = sen x; Im(sen x) = [ -1,1] .

Sinal da Função: Como seno x é a ordenada do ponto-extremidade do arco:1

f(x) = sen x é positiva no 1° e 2° quadrantes (ordenada positiva)

f(x) = sen x é negativa no 3° e 4° quadrantes (ordenada negativa)

Observe que esse gráfico é razoável, Pois:

Quando , 1º quadrante, o valor de sen x cresce de 0 a 1.

Quando , 2º quadrante, o valor de sen x decresce de 1 a 0.

Quando , 3º quadrante, o valor de sen x decresce de 0 a -1.

Quando , 4º quadrante, o valor de sen x cresce de -1 a 0.]

Lei dos senos: Seja um triângulo qualquer como o que aparece na figura ao lado, com lados a, b e c, que são os lados opostos aos ângulos A, B e C, respectivamente. O quociente entre a medida de cada lado e o seno do ângulo oposto a este lado é uma constante igual a 2R, em que R é o raio da circunferência circunscrita ao triângulo, isto é:

a

________________________________________sen(A) = b

________________________________________sen(B) = c

________________________________________sen(C) =2R

Função cosseno:

Chamamos de função cosseno a função f(x) = cos x.

O domínio dessa função é R e a imagem é Im [ -1,1] ; visto que, na circunferência trigonométrica o raio é unitário e, pela definição do cosseno, –1 £ cos x £ 1, ou seja:

Domínio de f(x) = cos x; D(cos x) = R.

Imagem de f(x) = cos x; Im(cos x) = [ -1,1] .

Sinal da Função: Como cosseno x é a abscissa do ponto-extremidade do arco:

f(x) = cos x é positiva no 1° e 2° quadrantes (abscissa positiva)

f(x) = cos x é negativa no 3° e 4° quadrantes (abscissa negativa)

Observe que esse gráfico é razoável, Pois:

Quando , 1º quadrante, o valor do cos x decresce de 1 a 0.

Quando , 2º quadrante, o valor do cos x decresce de 0 a -1.

Quando , 3º quadrante, o valor do cos x cresce de -1 a 0.

Quando , 4º quadrante, o valor do cos x cresce de 0 a 1.

Lei dos Cossenos: Em um triângulo qualquer, o quadrado da medida de um lado é igual a diferença entre a soma dos quadrados das medidas dos outros dois lados e o dobro do produto das medidas

...

Baixar como (para membros premium)  txt (6.2 Kb)  
Continuar por mais 4 páginas »
Disponível apenas no TrabalhosGratuitos.com