Matemática Financeira
Trabalho Escolar: Matemática Financeira. Pesquise 862.000+ trabalhos acadêmicosPor: katiamma • 25/4/2013 • 4.286 Palavras (18 Páginas) • 570 Visualizações
Introdução
A Matemática Financeira é uma ferramenta útil na análise de algumas alternativas de investimentos ou financiamentos de bens de consumo. Consiste em empregar procedimentos matemáticos para simplificar a operação financeira a um Fluxo de Caixa.
Logo, conhecer o funcionamento de calculadoras financeiras e planilhas de cálculo é fundamental ao acadêmico que cursa Ciências Sociais Aplicadas, em especial: Administração, Ciências Contábeis e Economia.
Diante desse cenário, este desafio propõe o exercício destas ferramentas (calculadoras e planilhas eletrônicas) por meio da simulação de algumas situações didáticas e outras comuns ao nosso cotidiano.
1.Conceitos básicos
1.1.Capital
O Capital é o valor aplicado através de alguma operação financeira. Também conhecido como: Principal, Valor Atual, Valor Presente ou Valor Aplicado. Em inglês usa-se Present Value (indicado pela tecla PV nas calculadoras financeiras).
1.2.Juros
Juros representam a remuneração do Capital empregado em alguma atividade produtiva. Os juros podem ser capitalizados segundo dois regimes: simples ou compostos.
A maioria das operações envolvendo dinheiro utiliza juros compostos. Estão incluídas: compras a médio e longo prazo, compras com cartão de crédito, empréstimos bancários, as aplicações financeiras usuais como Caderneta de Poupança e aplicações em fundos de renda fixa, etc. Raramente encontramos uso para o regime de juros simples: é o caso das operações de curtíssimo prazo, e do processo de desconto simples de duplicatas.
1.3.Taxa de juros
A taxa de juros indica qual remuneração será paga ao dinheiro emprestado, para um determinado período. Ela vem normalmente expressa da forma percentual, em seguida da especificação do período de tempo a que se refere:
8 % a.a. - (a.a. significa ao ano).
10 % a.t. - (a.t. significa ao trimestre).
Outra forma de apresentação da taxa de juros é a unitária, que é igual a taxa percentual dividida por 100, sem o símbolo %:
0,15 a.m. - (a.m. significa ao mês).
0,10 a.q. - (a.q. significa ao quadrimestre)
1.4.Montante (também conhecido como valor acumulado)
É a soma do Capital Inicial com o juro produzido em determinado tempo. Para se chegar a essa conclusão através de uma relação direta pode se fazer uso do seguinte:
P = C + ( t • i • C)
onde,
P = Montante
C = Capital
t = tempo de investimento
i = taxa de juro
2 .Juros Simples e Compostos
Juros é um atributo de uma aplicação financeira, ou seja, referimos a uma quantia em dinheiro que deve ser paga por um devedor (o que pede emprestado), pela utilização de dinheiro de um credor (aquele que empresta).
Existem dois tipos de juros:
JUROS SIMPLES: o juro de cada intervalo de tempo sempre é calculado sobre o capital inicial emprestado ou aplicado.
JUROS COMPOSTOS: o juro de cada intervalo de tempo é calculado a partir do saldo no início de correspondente intervalo. Ou seja: o juro de cada intervalo de tempo é incorporado ao capital inicial e passa a render juros também.
2.1. JUROS SIMPLES
O regime de juros será simples quando o percentual de juros incidir apenas sobre o valor principal. Sobre os juros gerados a cada período não incidirão novos juros. Valor Principal ou simplesmente principal é o valor inicial emprestado ou aplicado, antes de somarmos os juros. Transformando em fórmula temos:
J = P . i . n
Onde:
J = juros
P = principal (capital)
i = taxa de juros
n = número de períodos
Exemplo: Temos uma dívida de R$ 1000,00 que deve ser paga com juros de 8% a.m. pelo regime de juros simples e devemos pagá-la em 2 meses. Os juros que pagarei serão:
J = 1000 x 0.08 x 2 = 160
Ao somarmos os juros ao valor principal temos o montante.
Montante = Principal + Juros
Montante = Principal + ( Principal x Taxa de juros x Número de períodos )
M = P . ( 1 + ( i . n ) )
Exemplo: Calcule o montante resultante da aplicação de R$70.000,00 à taxa de 10,5% a.a. durante 145 dias.
SOLUÇÃO:
M = P . ( 1 + (i.n) )
M = 70000 [1 + (10,5/100).(145/360)] = R$72.960,42
Observe que expressamos a taxa i e o período n, na mesma unidade de tempo, ou seja, anos. Daí ter dividido 145 dias por 360, para obter o valor equivalente em anos, já que um ano comercial possui 360 dia.
2.2. JUROS COMPOSTOS
O regime de juros compostos é o mais comum no sistema financeiro e portanto, o mais útil para cálculos de problemas do dia-a-dia. Os juros gerados a cada período são incorporados ao principal para o cálculo dos juros do período seguinte, após cada período, os juros são incorporados
...