TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Movimento Uniforme

Monografias: Movimento Uniforme. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  21/10/2013  •  542 Palavras (3 Páginas)  •  274 Visualizações

Página 1 de 3

Grandezas Angulares

As grandezas até agora utilizadas de deslocamento/espaço (s, h, x, y), de velocidade (v) e de aceleração (a), eram úteis quando o objetivo era descrever movimentos lineares, mas na análise de movimentos circulares, devemos introduzir novas grandezas, que são chamadas grandezas angulares, medidas sempre em radianos. São elas:

deslocamento/espaço angular: φ (phi)

velocidade angular: ω (ômega)

aceleração angular: α (alpha)

Saiba mais...

Da definição de radiano temos:

Desta definição é possível obter a relação:

E também é possível saber que o arco correspondente a 1rad é o ângulo formado quando seu arco S tem o mesmo comprimento do raio R.

Espaço Angular (φ)

Chama-se espaço angular o espaço do arco formado, quando um móvel encontra-se a uma abertura de ângulo φ qualquer em relação ao ponto denominado origem.

E é calculado por:

Deslocamento angular (Δφ)

Assim como para o deslocamento linear, temos um deslocamento angular se calcularmos a diferença entre a posição angular final e a posição angular inicial:

Sendo:

Por convenção:

No sentido anti-horário o deslocamento angular é positivo.

No sentido horário o deslocamento angular é negativo.

Velocidade Angular (ω)

Análogo à velocidade linear, podemos definir a velocidade angular média, como a razão entre o deslocamento angular pelo intervalo de tempo do movimento:

Sua unidade no Sistema Internacional é: rad/s

Sendo também encontradas: rpm, rev/min, rev/s.

Também é possível definir a velocidade angular instantânea como o limite da velocidade angular média quando o intervalo de tempo tender a zero:

Aceleração Angular (α)

Seguindo a mesma analogia utilizada para a velocidade angular, definimos aceleração angular média como:

Algumas relações importantes

Através da definição de radiano dada anteriormente temos que:

mas se isolarmos S:

derivando esta igualdade em ambos os lados em função do tempo obteremos:

mas a derivada da Posição em função do tempo é igual a velocidade linear e a derivada da Posição Angular em função do tempo é igual a velocidade angular, logo:

onde podemos novamente derivar a igualdade em função do tempo e obteremos:

mas a derivada da velocidade linear em função do tempo é igual a aceleração linear, que no movimento circular

...

Baixar como (para membros premium)  txt (4 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com