TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Poligonos E Poliedros

Dissertações: Poligonos E Poliedros. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  9/3/2014  •  870 Palavras (4 Páginas)  •  657 Visualizações

Página 1 de 4

POLÍGONOS E POLIEDROS

Geometria plana

Polígonos e poliedros convexos e côncavos

Polígonos

Em geometria, uma figura plana (duas dimensões) com três ou mais lados. Os polígonos comuns têm nomes que definem o número de lados (por exemplo, triângulo, quadrilátero, pentágono).

Polígonos regulares

Obs. Estas figuras são regulares.

Estes são todos polígonos convexos, sem nenhum ângulo interno maior do que 180º;. A soma dos ângulos internos de um polígono com n lados é dada pela fórmula (2n - 4) x 90º; então, quanto mais lados um polígono tiver, maior a soma dos seus ângulos internos e, no caso de um polígono convexo, mais se aproxima de um círculo.

Triângulo

Em geometria, uma figura plana de três lados, cuja soma dos ângulos interiores totaliza 180º. Os triângulos podem ser classificados pelo comprimento relativo dos seus lados. Um triângulo escaleno tem três lados de comprimentos diferentes; um triângulo isósceles tem pelo menos dois lados iguais; um triângulo equilátero tem três lados iguais (e três ângulos iguais de 60º).

Um triângulo retângulo tem um ângulo de 90º.Se o comprimento de um lado de um triângulo for "b" e a distância perpendicular daquele lado ao vértice oposto "a" (a altura do triângulo), a sua área A = ½* b * a.

Regular

Diz-se das figuras geométricas que têm todos os ângulos e todos os lados iguais. Diz-se, também, dos sólidos em que as bases são polígonos regulares.

Geometria Espacial

Poliedros

Definição

Poliedro é um sólido limitado externamente por planos no espaço R3. As regiões planas que limitam este sólido são as faces do poliedro.

As interseções das faces são as arestas do poliedro.

As interseções das arestas são os vértices do poliedro.

Poliedros convexos são aqueles cujos ângulos diedrais formados por planos adjacentes têm medidas menores do que 180o. Outra definição: Dados quaisquer dois pontos de um poliedro convexo, o segmento que tem esses pontos como extremidades, deverá estar inteiramente contido no poliedro.

Relações de Euler

Se V é o número de vértices, F é o número de faces, A é o número de arestas e M é o número de ângulos entre as arestas de um poliedro convexo, então:

V + F = A + 2

M = 2 A

Poliedros Regulares

Um poliedro é dito regular se todas as suas faces são regiões poligonais regulares com n lados, o que significa que o mesmo número de arestas se encontram em cada vértice.

Existem algumas características gerais que são válidas para todos os poliedros regulares. Se n é o número de lados da região poligonal, a é a medida da aresta A e z=M/V é a divisão do número de ângulos diedrais pelo número de vértices, então:

Faces, Vértices, Arestas e Ângulos diedrais nos Poliedros regulares convexos

Nome do poliedro Nº de faces Poligonal regular Nº de vértices Nº de arestas Nº de ângulos entre arestas

Tetraedro 4 Triangular 4 6 12

Hexaedro 6 Quadrada 8 12 24

Octaedro 8 Triangular 6 12 24

Dodecaedro 12 Pentagonal 20 30 60

Icosaedro 20 Triangular 12 30 60

Poliedros regulares convexos e côncavos

Em geometria, uma figura sólida com quatro ou mais lados planos. Quanto mais faces um poliedro tiver, mais se aproxima de uma esfera. O conhecimento

...

Baixar como (para membros premium)  txt (5.8 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com