Relações métricas
Exames: Relações métricas. Pesquise 861.000+ trabalhos acadêmicosPor: lohranna • 10/5/2014 • 628 Palavras (3 Páginas) • 264 Visualizações
RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO
Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:
a: hipotenusa
b e c: catetos
h: altura relativa a hipotenusa
m e n: projeções ortogonais dos catetos sobre a hipotenusa.
Relações métricas
Para um triângulo retângulo ABC podemos estabelecer algumas relações entre as medidas de seus elementos:
- O quadrado de um cateto é igual ao produto da hipotenusa pela projeção desse cateto sobre a hipotenusa.
b² = a.n c² = a.m
- O produto dos catetos é igual ao produto da hipotenusa pela altura relativa a hipotenusa.
b.c = a.h
- O quadrado da altura é igual ao produto das projeções dos catetos sobre a hipotenusa.
h² = m.n
- O quadrado da hipotenusa é igual a soma dos quadrados dos catetos.
a² = b² + c²
Essa relação é conhecida pelo nome de TEOREMA DE PITÁGORAS.
Exemplo:
Neste triângulo ABC, vamos calcular a, h, m e n:
a² = b² + c² → a² = 6² + 8² → a² = 100 → a = 10
b.c = a.h → 8.6 = 10.h → h = 48/10 = 4,8
c² = a.m → 6² = 10.m → m = 36/10 = 3,6
b² = a.n → 8² = 10.n → n = 64/10 = 6,4
- Tangente do ângulo agudo: razão entre o cateto oposto ao ângulo e o cateto adjacente.
tgÊ = e/o tgÔ = o/e
Observe: senÊ = cosÔ, senÔ = cosÊ e tgÊ = 1/tgÔ, sempre Ê + Ô = 90º
Exemplo:
senÔ = 3/5 = 0,6 senÊ = 4/5 = 0,8
cosÔ = 4/5 = 0,8 cosÊ = 3/5 = 0,6
tgÔ = 3/4 = 0,75 tgÊ = 4/3 = 1,333....
Ângulos notáveis
Podemos determinar seno, cosseno e tangente de alguns ângulos. Esses ângulos chamados de notáveis, são: 30°, 45° e 60°. A partir das definições de seno, cosseno e tangente, vamos determinar esses valores para os ângulos notáveis. Considere um triângulo eqüilátero de lado l. Traçando a altura AM, obtemos o triângulo retângulo AMC de ângulos agudos iguais a 30° e 60°. Aplicando as razões trigonométricas ao triângulo AMC temos:
Para obter as razões trigonométricas do ângulo de 45°, considere um quadrado de lado l. A diagonal divide o quadrado em dois triângulos retângulos isósceles.
Elementos de um triangulo
...