TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Tps De Calculo 3

Artigo: Tps De Calculo 3. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  28/11/2013  •  1.210 Palavras (5 Páginas)  •  306 Visualizações

Página 1 de 5

ETAPA I

PASSO1

O SURGIMENTO DO CÁLCULO DIFERENCIAL INTEGRAL

O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração.

O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.

Historicamente, Newton foi o primeiro a aplicar o cálculo à física, ao passo que Leibniz desenvolveu a notação utilizada até os dias de hoje. O argumento histórico para conferir aos dois a invenção do cálculo é que ambos chegaram de maneiras distintas ao teorema fundamental do cálculo.

Newton aperfeiçoou-se nos resultados da tangente e quadratura dos primeiros dois terços do século XVII. Ele afirmava em termos físicos quais eram os dois problemas mais básicos de cálculo: 1) Dado o comprimento do espaço continuamente, isto é, em todo instante de tempo, encontrar a velocidade do movimento, isto é, a derivada em qualquer tempo dado; 2) Dada a velocidade de movimento continuamente, encontrar o comprimento do espaço, isto é, a integral ou a antiderivada, descrita em qualquer tempo proposto.

Mas no lugar de derivadas, Newton empregou flúxions de variáveis, denominados, por exemplo, de x, e em vez de antiderivadas, usou o que ele chamou de fluentes. A partir de Gregory Newton adotou-se a idéia de que a área entre uma curva y e o eixo horizontal, era dependente do extremo direito, t = x. De fato, Newton pensou na área como sendo realmente gerada pelo movimento da reta vertical t = x. Assim, o flúxion da área era simplesmente yx. Então, a técnica de Newton para encontrar tais quadraturas era encontrar o fluente de y, equivalente a encontrar nossas antiderivadas.

As idéias de Leibniz sobre integrais, derivadas e cálculo em geral foram desenvolvidas a partir de analogias com somas e diferenças. Por exemplo, para o teorema fundamental do cálculo, se fosse dada uma sequência finita de números tais como: y,0,1,8,27,64,125 e 216, com diferenças y:1,7,19,37,61 e 89, ele notou que a soma das diferenças, y= (1-0)+

(8-1)+(27-8)+......(216-125), alternavam-se em torno da diferença entre o primeiro e o último valor de y, 216-0. Já para Leibniz, uma curva era um polígono feito de um número infinito de lados, cada um com comprimento “infinitesimal”.

Leibniz escreveu em 1680, “Eu represento a área de uma figura pela soma infinita de todos os retângulos limitados pelas ordenadas e diferenças das abscissas”, isto é, como ò ydx. Então, “elevando a alturas maiores”, baseando-se na analogia com somas finitas e diferenças, afirmou que ao encontrar a área representada por ò ydx, deve-se encontrar uma curva Y tal que as ordenadas y são diferenças de Y, ou y = dY. Em tempos modernos, Y é nossa antiderivada, e assim, Leibniz formulou uma afirmação inicial da parte 1 do Teorema Fundamental do Cálculo.

PASSO 2

DESAFIO A

Qual das alternativas representa a integral indefinida de : ( a33+3a3+3 a )

( a33+3a3+3 a )=

F(a)=13a3+31a3+31a=

F(a)=13.a44+31.a-2-2+3.lna=

F(a)=a412-32a2+3.lna+c

A alternativa correta correspondente ao desafio A é a ( b )

DESAFIO B

Suponha que o processo de perfuração de um poço de petróleo tenha um custo fixo de U$ 10.000 e um custo marginal de C’(q) = 1000 + 50q dólares por pé, onde q é a profundidade em pés. Sabendo que C (0) = 10.000, a alternativa que expressa C(q), o custo total para se perfurar q pés, é:

1000dq+50d.dq=

C(q)=1000q+50q22=

C(q)=1000q+25q2+c=

C(q)=1000+25q2+10000

A alternativa correta correspondente ao desafio B é a ( a )

DESAFIO C

No inicio dos anos 90, a taxa de consumo mundial de petróleo cresceu exponencialmente. Seja C(t) a taxa de consumo de petróleo no instante t, onde t é o número de anos contados a partir do inicio de 1990. Um modelo aproximado para C(t) é dado por: C(t) = 16,1.e0,07t. Qual das alternativas responde corretamente a quantidade de petróleo consumida entre 1992 e 1994?

Para 1992 Para 1994

Ct=16,1.e0,07t= Ct=16,1.e0,07t=

C2= 16,1.e0,07.2= C2= 16,1.e0,07.4=

C2=18,52 bilhões C2=21,30 bilhões

18,52 bilhões + 21,30 bilhões = 39,76 bilhões

A alternativa correta correspondente ao desafio C é a ( c )

DESAFIO D

A área sob a curva y=ex2 de x=-3 a x=2 é dada por:

-32ex2dx

u=x2

du= ddxx.2-x.ddx222=24dx=

du=12dx=

2du=dx

-32eu2.du=

2-32eudu=2.ex22-3=2.e22-2.e-32=5,43-0,44=4,99

A alternativa correta correspondente ao desafio D é a ( a )

PASSO 3

Para o Desafio A:

A resposta que obtemos nos cálculos executados para esse desafio foi a foi a alternativa (b) que direciona a associação ao número 3, para execução dos cálculos

...

Baixar como (para membros premium)  txt (8 Kb)  
Continuar por mais 4 páginas »
Disponível apenas no TrabalhosGratuitos.com