Um pouco da História da Trigonometria
Seminário: Um pouco da História da Trigonometria. Pesquise 862.000+ trabalhos acadêmicosPor: hdrbuiu • 16/9/2013 • Seminário • 1.858 Palavras (8 Páginas) • 581 Visualizações
Um pouco da História da Trigonometria
A origem da trigonometria é incerta. Entretanto, pode-se dizer que o início do desenvolvimento da trigonometria se deu principalmente devido aos problemas gerados pela Astronomia, Agrimensura e Navegações, por volta do século IV ou V a.C., com os egípcios e babilônios. É possível encontrar problemas envolvendo a cotangente no Papiro Rhind e também uma notável tábua de secantes na tábula cuneiforme babilônica Plimpton 322.
A palavra trigonometria significa medida das partes de um triângulo. Não se sabe ao certo se o conceito da medida de ângulo surgiu com os gregos ou se eles, por contato com a civilização babilônica, adotaram suas frações sexagesimais. Mas os gregos fizeram um estudo sistemático das relações entre ângulos - ou arcos - numa circunferência e os comprimentos de suas cordas.
Papiro Rhind, Museu de Londres.
O astrônomo Hiparco de Nicéia, por volta de 180 a 125 a.C., ganhou o direito de ser chamado "o pai da Trigonometria" pois, na segunda metade do século II a.C., fez um tratado em doze livros em que se ocupou da construção do que deve ter sido a primeira tabela trigonométrica, incluindo uma tábua de cordas. Evidentemente, Hiparco fez esses cálculos para usá-los em seus estudos de Astronomia. Hiparco foi uma figura de transição entre a astronomia babilônica e a obra de Ptolomeu. As principais contribuições à Astronomia, atribuídas a Hiparco se constituíram na organização de dados empíricos derivados dos babilônios, bem como na elaboração de um catálogo estrelar, melhoramentos em constantes astronômicas importantes - duração do mês e do ano, o tamanho da Lua, o ângulo de inclinação da eclítica - e, finalmente, a descoberta da precessão dos equinócios.
A "Trigonometria" era então baseada no estudo da relação entre um arco arbitrário e sua corda. Hiparco escreve a respeito do cálculo de comprimentos das cordas. Apesar da corda de um arco não ser o seno, uma vez conhecido o valor do seu comprimento, pode-se calcular o seno da metade do arco, pois a metade do comprimento da corda dividido pelo comprimento do raio do círculo é justamente esse valor, ou seja, para um círculo de raio unitário, o comprimento da corda subtendida por um ângulo x é , conforme figura:
OB r
A palavra cosseno surgiu somente no século XVII, como sendo o seno do complemento de um ângulo. Os conceitos de seno e cosseno foram originados pelos problemas relativos à Astronomia, enquanto que o conceito de tangente, ao que parece, surgiu da necessidade de calcular alturas e distâncias.
Outro matemático grego, Menelau de Alexandria, por volta de 100 d.C., produziu um tratado sobre cordas num círculo, em seis livros, porém vários deles se perderam. Felizmente o seu tratado Sphaerica , em três livros, se preservou numa versão árabe e é o trabalho mais antigo conhecido sobre trigonometria esférica.
Entretanto, a mais influente e significativa obra trigonométrica da Antigüidade foi a Syntaxis mathematica, obra escrita por Ptolomeu de Alexandria que contém 13 livros. Este tratado é famoso por sua compacidade e elegância, e para distinguí-lo de outros foi associado a ele o superlativo magiste ou "o maior". Mais tarde na Arábia o chamaram de Almajesto, e a partir de então a obra é conhecida por esse nome.
Mostrando a mesma influência babilônica apresentada por Hiparco, Ptolomeu dividiu a circunferência em 360 partes e o diâmetro em 120 partes. Usou como aproximação para o número . Embora não fizesse uso dos termos seno e cosseno, mas das cordas, utilizou o que pode ser considerado o prenúncio da conhecida relação fundamental . Semelhantemente, em termos de cordas, Ptolomeu conhecia as propriedades que, em linguagem atual, são:
•
•
•
•
•
De posse do equivalente dessas fórmulas, Ptolomeu construiu uma tabela de cordas de uma circunferência, para ângulos que variam de meio em meio grau, entre 0º e 180º. Calculou comprimentos de cordas, inscrevendo polígonos regulares de 3, 4, 5, 6 e 10 lados num círculo. Isso lhe possibilitou encontrar a corda subtendida por ângulos de 36º, 60º, 72º, 90º e 120º. Descobriu então, um método para encontrar a corda subtendida pela metade do arco de uma corda conhecida. Esse fato que, em nossa simbologia, é o mesmo que , juntamente com interpolação, permitiu-lhe calcular cordas com um bom grau de precisão.
Posteriormente, surgiu a necessidade de uma nova unidade de medida para os ângulos. Foi quando surgiu o radiano, denominado radian, pois os estudiosos discutiam uma "expressão" do ângulo em termos de , que primeiramente foi chamada "-medida", "circular" ou "medida arcual". Nenhum autor explica por que fizeram uso dessa unidade, mas o seu uso simplificou várias fórmulas matemáticas e físicas.
Durante seis séculos, O Almajesto, representou a mais importante fonte de consulta para os astrônomos de todo o mundo. Porém no século VIII é que os cientistas voltariam a sua atenção para as obras trigonométricas de um povo, que sempre surpreendera o mundo com sua Matemática original e criativa, os Hindus.
A mais antiga tábua de senos foi descoberta na Índia, onde essas tábuas sem dúvida se originaram. Seus inventores, desconhecidos, conheciam as idéias matemáticas gregas e babilônias transmitidas como subprodutos de um florescente comércio romano com o sul da Índia, via Mar Vermelho e Oceano Índico. O Surya Siddhanta, cujo significado é sistemas de Astronomia, era um conjunto de textos matemáticos e regras enigmáticas de Astronomia, redigido em versos, em sânscrito, com poucas explicações e nenhuma prova. Foi composto no século IV ou V d.C., mas a versão que resta foi revista tantas vezes que é difícil dizer que partes estão em sua forma original.
O primeiro aparecimento real do seno de um ângulo se deu no trabalho dos hindus. Aryabhata, por volta do ano 500, elaborou tabelas envolvendo metade de cordas que agora realmente são tabelas de senos e usou jiva no lugar de seno. Esta mesma tabela foi reproduzida no trabalho de Brahmagupta, em 628, e um método detalhado para construir uma tabela de senos para qualquer ângulo foi dado por Bhaskara em 1150.
Durante algum tempo os matemáticos árabes oscilaram entre o Almajesto e a Trigonometria de jiva - de
...