Funções polinomiais singulares
Seminário: Funções polinomiais singulares. Pesquise 862.000+ trabalhos acadêmicosPor: Cristiandenis • 15/9/2014 • Seminário • 1.154 Palavras (5 Páginas) • 290 Visualizações
Funções polinomiais de grau um
Gráfico de uma função do 1º grau
Aqui, n=1. Por isso, os polinômios de grau 1 têm a forma
As funções deste tipo são chamadas de função afim. Se chamamos esta função afim de linear.
Por exemplo, é uma função polinomial de grau um composta de dois monômios.
Definição
Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0.
Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.
Veja alguns exemplos de funções polinomiais do 1º grau:
f(x) = 5x - 3, onde a = 5 e b = - 3
f(x) = -2x - 7, onde a = -2 e b = - 7
f(x) = 11x, onde a = 11 e b = 0
Gráfico
O gráfico de uma função polinomial do 1º grau, y = ax + b, com a 0, é uma reta oblíqua aos eixos Oxe Oy.
Exemplo:
Vamos construir o gráfico da função y = 3x - 1:
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:
a) Para x = 0, temos y = 3 • 0 - 1 = -1; portanto, um ponto é (0, -1).
b) Para y = 0, temos 0 = 3x - 1; portanto, e outro ponto é .
Marcamos os pontos (0, -1) e no plano cartesiano e ligamos os dois com uma reta.
x y
0 -1
0
Já vimos que o gráfico da função afim y = ax + b é uma reta.
O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.
O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a • 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.
Função de 1º grau
Zero e Equação do 1º Grau
Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a 0, o número real x tal que f(x) = 0.
Temos:
f(x) = 0 ax + b = 0
Vejamos alguns exemplos:
1. Obtenção do zero da função f(x) = 2x - 5:
f(x) = 0 2x - 5 = 0
2. Cálculo da raiz da função g(x) = 3x + 6:
g(x) = 0 3x + 6 = 0 x = -2
3. Cálculo da abscissa do ponto em que o gráfico de h(x) = -2x + 10 corta o eixo das abicissas:
O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) = 0; então:
h(x) = 0 -2x + 10 = 0 x = 5
Crescimento e decrescimento
...