Estudos sobre modelagem de sistemas usando equações diferenciais
Artigo: Estudos sobre modelagem de sistemas usando equações diferenciais. Pesquise 862.000+ trabalhos acadêmicosPor: pablo.472 • 26/11/2014 • Artigo • 398 Palavras (2 Páginas) • 423 Visualizações
Passo – 1
Pesquisar e estudar sobre a modelagem de sistemas por meio de equações diferenciais em
sistemas físicos e problemas de engenharia.
A modelagem de acordo com nossos estudos é a forma de analisar um problema (encontrar qual o foco principal a ser resolvido ou o resultado que queremos), buscar alternativas e verificar qual a melhor saída comparando com o objetivo; para isto fazemos um diagrama de blocos ou simples anotações dos principais fatores do determinado problema.
Na matemática através deste método, elaboramos uma função onde temos uma variável como “fator” principal em relação ao tempo; e através desta de acordo com os resultados finais; também podemos fazer uma representação gráfica. Assim, podendo utilizar em uma pesquisa populacional ou ate mesmo para verificar o crescimento de um tumor.
Portanto, as modelagens através de equações diferenciais nos explicam o comportamento de certos sistemas.
Equações diferenciais:
Equação diferencial é conjuntos de derivadas pertencentes ao uma função desconhecida da variável.
Uma equação diferencial ordinária geralmente não possui perturbações ou quando há são pequenas, por exemplo, em um crescimento de uma população não é levada em consideração acidentes, doenças mas sim um ambiente perfeito para o acrescimento populacional em função do tempo.
A modelagem de sistemas por meio de equações diferenciais em sistemas físicos e problemas de engenharia.
O sistema de modelagem analisa a melhor maneira de alcançar um resultado, enquanto as equações diferenciais possuem um nível de exatidão muito grande, tornando em muitas vezes um método bem viável.
A sua aplicabilidade é notada na fórmula S=So + VoT + (AT²)/2 . O que se percebe na forma de S(t) = F’’(t) + F’(t) + F(t) do qual é um sistema preciso e completo quesito de calcular a velocidade, espaço, aceleração e tempo. Por este motivo, está diretamente ligada à modelagem e sua fórmula é na utilização de Equações Diferenciais.
De acordo com Rangel(2013) "Uma das principais razões da importância das equações diferenciais é que mesmo as equações mais simples são capazes de representar sistemas úteis. Mesmo alguns sistemas naturais mais complexos comportam modelagens em termos de equações diferenciais bem conhecidas. Por outro lado, problemas cuja modelagem exige equações diferenciais mais complicadas podem, hoje em dia, ser tratados através de métodos computacionais. Assim, o estudo e o desenvolvimento da área de modelagem de sistemas através de equações diferenciais são de suma importância para a compreensão de problemas reais, apresentando aplicações nas mais diversas áreas do conhecimento e, em particular, em Ciências Naturais".
...