Tabela De Derivadas e Integrais
Por: NoelRiversLennon • 25/9/2021 • Abstract • 2.671 Palavras (11 Páginas) • 124 Visualizações
Tabela de Integrais[pic 1][pic 2][pic 3]
1 u dv = uv −
v du
21 a 2 + u2 du = u
[pic 4]
- a2 ln(
[pic 5]
2 2 )
[pic 6]
u2 − a 2
a undu
2na
un −1du
u + a + u + C
2 2[pic 7][pic 8][pic 9][pic 10]
41 ∫
du =
u[pic 11]
- a arc cos(
) + C
u[pic 12][pic 13][pic 14][pic 15]
61 ∫
=
b(2n −1)[pic 16][pic 17]
−
b(2n + 1)[pic 18][pic 19]
n 1 n +i
(a 2u + 2u3 ) 2
2 a 4 2
[pic 20][pic 21]
2 2 2 2
[pic 22][pic 23][pic 24]
2 ∫ u du =
u + C
22 ∫ u2
a 2 + u2 du =
- + u −
ln⎛⎜ u +
a + u2 ⎞⎟ + C
42 u − a du = − u − a + ln u +
+ C 62
= − a + bu − b(2n − 3)
n + 1[pic 25][pic 26][pic 27]
8 8 ⎝ ⎠
∫ u2 u
∫ a(n −1)un−1
2a(n −1) ∫
3 du[pic 28][pic 29]
u
= 1n u + C
23
u[pic 30][pic 31][pic 32]
du =
a2 + u2 − a ln + C
43 ∫
du
u2du[pic 33][pic 34]
= ln u + + C
a 2[pic 35][pic 36][pic 37][pic 38][pic 39]
[pic 40]
63 ∫ sen 2 (u)du =
1u −
2[pic 41]
1
1 sen(2u) + C 4
1[pic 42]
4 ∫ eudu = eu + C
24 ∫
du = −
u2 u[pic 43][pic 44]
- ln(u +
a 2 + u2 )+ C
44 ∫
= + ln u +
2 2
- C 64 ∫ cos2 (u)du =
u + sen(2u) + C
2 4[pic 45][pic 46]
u 1 u
du = ln(
2 2 )
[pic 47]
45 du
65 tg2 (u)du = tg(u) − u + C
- ∫ a du = In(a) a + C
25 ∫
a 2 + u2
u + a + u + C
∫ 2 2
u u[pic 48][pic 49]
=
- a2
- C
a 2u[pic 50][pic 51]
- sen(u) du = −cos(u) + C[pic 52]
u2 du
26 =[pic 53][pic 54]
- a ln(u +
[pic 55]
a 2 + u2 ) + C
[pic 56]
46 ∫
du u
3 / 2 = − + C[pic 57][pic 58]
66 ∫ cot g2 (u)du = − cot g(u) − u + C
7 ∫ cos(u) du = sen(u) + C[pic 59]
∫
27 ∫
du
2
= − 1 ln[pic 60]
2
a2 + u2 + a
...