TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

The Fourier Transform of the Gaussian

Por:   •  24/8/2020  •  Resenha  •  334 Palavras (2 Páginas)  •  136 Visualizações

Página 1 de 2

Fourier Transform of the Gaussian

Konstantinos G. Derpanis October 20, 2005

In this note we consider the Fourier transform1 of the Gaussian. The Gaussian function, g(x), is defined as,

1        x2[pic 1]

g(x) =    √        e 2σ2 ,        (3)

σ  2π

where


g(x)dx = 1 (i.e., normalized). The Fourier transform of the Gaussian function is given

[pic 2]

by:        −∞

Proof:


tt(ω) = e


2 2

2    .        (4)[pic 3]

We begin with differentiating the Gaussian function:

 dg(x)  =  x g(x)        (5)[pic 4][pic 5]

Next, applying the Fourier transform to both sides of (5) yields,

iωtt(ω) =

dG(ω)

[pic 6]


1

2[pic 7]


dtt(ω)


(6)

Integrating both sides of (7) yields,


    dω     =        2        (7)

tt(ω)[pic 8]

ω dG(ωr)[pic 9]

[pic 10]

    r            j =[pic 11]

tt(ωj)

0


ω

ωjσ2j        (8)[pic 12]

0

ln tt(ω) ln tt(0) =


σ2ω2

2   .        (9)[pic 13]

Since the Gaussian is normalized, the DC component tt(0) = 0, thus (9) can be rewritten as,

ln tt(ω) =


σ2ω2        (10)

2[pic 14]

Finally, applying the exponent to each side yields,

ln G(ω) =


σ2 ω2

[pic 15]


(11)

as desired.

1The Fourier transform pair is given by:

...

Baixar como (para membros premium)  txt (1.7 Kb)   pdf (138.2 Kb)   docx (158.9 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com