TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Cálculo diferencial e integral

Seminário: Cálculo diferencial e integral. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  5/10/2014  •  Seminário  •  1.697 Palavras (7 Páginas)  •  356 Visualizações

Página 1 de 7

Passo 1:

O Cálculo Diferencial e Integral

O Cálculo Diferencial e Integral, é um ramo importante da matemática, desenvolvido a partir da Álgebra e da Geometria, que se dedica ao estudo de taxas de variação de grandezas (como a inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido). Onde há movimento ou crescimento e onde forças variáveis agem produzindo aceleração, o cálculo é a matemática a ser empregada.

O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exactas. Desenvolvido por Isaac Newton, e Gottfried Leibniz em trabalhos independentes O Cálculo auxilia em vários conceitos e definições na matemática, química, física clássica, física moderna e economia.

O Cálculo Integral é o estudo das definições, propriedades, e aplicações de dois conceitos relacionados, asintegrais indefinidas e as integrais definidas. O processo de encontrar o valor de uma integral é chamadointegração. Em linguagem técnica, o calculo integral estuda dois operadores lineares relacionados.

A integral indefinida é a antiderivada, o processo inverso da derivada. F é uma integral indefinida de f quando fé uma derivada de F. (O uso de letras maiúsculas e minúsculas para uma função e sua integral indefinida é comum em cálculo.)

A integral definida insere uma função e extrai um número, o qual fornece a área entre o gráfico da função e o eixo do x. A definição técnica da integral definida é o limite da soma das áreas dos retângulos, chamada Soma de Riemann.

Um exemplo motivacional é a distância (D) viajada em um determinado tempo (t).

Se a velocidade (V) é constante, somente multiplicação é necessária, mas se a velocidade varia, então precisamos de um método mais poderoso para encontrar a distância. Um método é a aproximação da distância viajada pela divisão do tempo em muito mais intervalos de tempo, e então multiplicando o tempo em cada intervalo por uma das velocidades naquele intervalo, e então fazer uma Soma de Riemann das distâncias aproximadas viajadas em cada intervalo. A idéia básica é que se somente um pequeno tempo passar, então a velocidade vai permanecer praticamente a mesma. Entretanto, uma Soma de Riemann somente da uma aproximação da distância viajada. Nós precisamos pegar o limite de todas as Somas de Riemann para encontrar a distância viajada exata.

Integração pode ser explicada como a medida da área entre uma curva, definida por f(x), entre dois pontos (aqui ae b).

Se f(x) no diagrama da esquerda representa a velocidade variando de acordo com o tempo, a distância viajada entre os tempos representados por a e b é a área da região escura s.

Para aproximar a área, um método intuitivo seria dividir em distâncias entre a e b em um número de segmentos iguais, a distância de cada segmento representado pelo símbolo ?x. Para cada segmento menor, nós podemos escolher um valor da função f(x). Chame o valor h. Então a área do retângulo com a base ?x e altura h dá a distância (tempo ?x multiplicado pela velocidade h) viajado naquele segmento. Associado com cada segmento é o valor médio da função sobre ela,f(x)=h. A soma de todos os retângulos dados é uma aproximação da área entre o eixo e a curva, o qual é uma aproximação da distância total viajada. Um valor menor para ?x nos dará mais retângulos e, na maioria dos casos uma melhor aproximação, mas para uma resposta exata nós precisamos fazer o limite em ?x tender a zero.

O símbolo da integração é , um S alongado (que significa "soma"). A integral definida é escrita da forma:

e lida como "a integral de a até b de f-de-x em relação a x."

A integral indefinida, ou antiderivada, é escrita da forma:

.

Desde que a derivada da função y = x² + C é y ' = 2x (onde C é qualquer constante), então:

.

Teorema Fundamental do Cálculo

O teorema fundamental do cálculo afirma que a diferenciação e a integração são operações inversas. Mais precisamente, o teorema conecta os valores de antiderivadas ao valor de integrais definidas. Por ser usualmente mais fácil computar uma antiderivada do que aplicar a definição de uma integral definida, o teorema fundamental do cálculo provê uma forma prática de computar integrais definidas. Pode também ser interpretado como uma afirmação precisa do fato que a diferenciação é o inverso da integração.

É afirmado pelo teorema fundamental do cálculo que: Se uma função f é contínua no intervalo [a, b] e se F é uma função cuja derivada é f no intervalo (a, b), então

É afirmado pelo teorema fundamental do cálculo que: Se uma função f é contínua no intervalo [a, b] e se F é uma função cuja derivada é f no intervalo (a, b), então

Além disso, para cada x no intervalo (a, b) temos que

E, seu Corolário pode ser transcrito da seguinte forma:

Considere f uma função contínua de valores reais definida em um intervalo fechado [a, b]. Se F é uma função tal que

para todo x em [a, b]

Então:

e

.

Essa descoberta, realizada por Newton e Leibniz, que se basearam nos resultados de um trabalho anterior de Isaac Barrow, exerceu um papel chave na massiva proliferação de resultados analíticos que se seguiram após seus trabalhos ficarem conhecidos. O Teorema fundamental do cálculo provê um método algébrico de computar muitas integrais definidas sem executar processos limite simplesmente por encontrar fórmula para antiderivadas.

Passo 2:

Desafios propostos:

Desafio A

...

Baixar como (para membros premium)  txt (8.3 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com