EQUAÇÃO DO 1º GRAU
Exam: EQUAÇÃO DO 1º GRAU. Pesquise 862.000+ trabalhos acadêmicosPor: rnt100 • 15/9/2013 • Exam • 1.160 Palavras (5 Páginas) • 416 Visualizações
EQUAÇÃO DO 1º GRAU
* Definição
É definido como uma equação como toda e qualquer igualdade (=) que somente pode ser satisfeita para alguns valores que estejam agregados em seus domínios.
Exemplos:
3x – 4 = 2 à o número X que é desconhecido recebe o termo de incógnita.
3y + 4 = 7 à o número Y que é desconhecido recebe o termo de incógnita.
Desta forma acima, é impossível afirmar se a igualdade do problema é verdadeira ou falsa, pois os valores das incógnitas são desconhecidos.
É possível verificar que as equações acima se tornam verdadeiras quando:
x = 2, veja:
3x – 4 = 2
3x = 2 + 4 à 3x = 6 à x = 2
y = 1, veja:
3y = 7 – 4 à 3y = 3 à y = 1
Assim os conjuntos são verdadeiros (V) e com soluções (S) = 2 e 1 respectivamente
- Equação do 1º grau
Agora que foi definido o termo equação, pode-se definir o que é equação do primeiro grau, como toda equação que satisfaça a forma:
ax + b = 0
Onde, tem-se:
a e b , são as constantes da equação, com a ≠ 0 (diferente de zero)
Observe:
4x + 10 = 1
a = 4
b = 10 >> constantes (4,10)
3x – 6 = 0
a = 3
b = 6 >> constantes (3,6)
Exemplo de fixação:
x + 2 = 6 »
Assim, o número que substitui o “x” na equação acima, tornando a sentença “verdadeira”, é o número 4, pois, 4 + 2 = 6.
Uma equação do 1º grau pode ser resolvida usando uma propriedade já informada em tutoriais anteriores:
ax + b = 0 » ax = - b
x = -b/a
Obs.: É possível transformar uma equação em outra que seja equivalente à primeira, porém esta segunda na forma mais simples de se efetuar cálculos. É possível somar ou subtrair, multiplicar ou dividir um mesmo número, que seja diferente de zero (≠0), aos membros da equação dada no problema.
Exemplo:
x – 4 = 0 » x –4 + 2 = 0 + 2 » x = 4
2x = 4 » 3.2x = 3.4 » x = 2
* Resolução de uma equação do 1º grau
Resolver uma equação do primeiro grau significa achar valores que estejam em seus domínios e que satisfaçam à sentença do problema, ou seja, será preciso determinar de forma correta a raiz da equação.
Na forma simples de entender a solução de equação do primeiro grau, basta separar as incógnitas dos números, colocando-os de um lado do sinal de igual (=). Desta forma, os números ficam de um lado da igualdade e do outro lado as constantes.
Para assimilar, veja alguns exemplos de fixação resolvidos:
a) Determine o valor do X:
4x – 12 = 8
4x = 8 + 12
4x = 20
x= 20/4 » x = 5 >> V = {5}
b) Qual o valor da incógnita x:
2 – 3.(2-4x) = 8
2 – 6 + 12x = 8
12x = 8 - 2 + 6
12x = 6 + 6
x = 12/12 » x = 1 >> V = {1}
Mais alguns exemplos de equações de primeiro grau:
x + 5 = 10 5x – 3 = 28 3x + 12 = 4
2x – 4 = 0 10 + 4.(5.4x) = 5 – (x+8)
Observe que, como informado no método de resolução dos problemas que envolvem equações do primeiro grau, sempre é colocado de um lado às incógnitas e de outros os números, para que se tenha assim a
...