História do cálculo integral
Tese: História do cálculo integral. Pesquise 861.000+ trabalhos acadêmicosPor: alesonaleson • 27/11/2013 • Tese • 1.674 Palavras (7 Páginas) • 478 Visualizações
A história do Cálculo Diferencial Integral
O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração. Calcular áreas já despertava, por suas aplicações práticas, grandes interesses nos gregos da Antiguidade. Apesar de várias fórmulas para o cálculo de áreas de figuras planas serem conhecidas desde esta época, e até mesmo problemas do cálculo de áreas de regiões limitadas por segmentos de retas e algumas curvas, como a parábola, terem sido estudados e resolvidos, para casos particulares, até o século XVII, quando foram estabelecidos os fundamentos do cálculo Diferencial e Integral como uma teoria matemática digna de crédito, não se conhecia nenhuma fórmula ou método geral que se pudesse aplicar para resolver o problema de calcular áreas de regiões limitadas por curvas quaisquer. Nos meados do século XVII, vários estudiosos europeus, entre eles Fermat e Pascal, passaram a usar nos seus trabalhos o método da exaustão, empregado por Arquimedes no cálculo de áreas de segmentos parabólicos.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.
A história do Cálculo Diferencial Integral
O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração. Calcular áreas já despertava, por suas aplicações práticas, grandes interesses nos gregos da Antiguidade. Apesar de várias fórmulas para o cálculo de áreas de figuras planas serem conhecidas desde esta época, e até mesmo problemas do cálculo de áreas de regiões limitadas por segmentos de retas e algumas curvas, como a parábola, terem sido estudados e resolvidos, para casos particulares, até o século XVII, quando foram estabelecidos os fundamentos do cálculo Diferencial e Integral como uma teoria matemática digna de crédito, não se conhecia nenhuma fórmula ou método geral que se pudesse aplicar para resolver o problema de calcular áreas de regiões limitadas por curvas quaisquer. Nos meados do século XVII, vários estudiosos europeus, entre eles Fermat e Pascal, passaram a usar nos seus trabalhos o método da exaustão, empregado por Arquimedes no cálculo de áreas de segmentos parabólicos.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.
A história do Cálculo Diferencial Integral
O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração. Calcular áreas já despertava, por suas aplicações práticas, grandes interesses nos gregos da Antiguidade. Apesar de várias fórmulas para o cálculo de áreas de figuras planas serem conhecidas desde esta época, e até mesmo problemas do cálculo de áreas de regiões limitadas por segmentos de retas e algumas curvas, como a parábola, terem sido estudados e resolvidos, para casos particulares, até o século XVII, quando foram estabelecidos os fundamentos do cálculo Diferencial e Integral como uma teoria matemática digna de crédito, não se conhecia nenhuma fórmula ou método geral que se pudesse aplicar para resolver o problema de calcular áreas de regiões limitadas por curvas quaisquer. Nos meados do século XVII, vários estudiosos europeus, entre eles Fermat e Pascal, passaram a usar nos seus trabalhos o método da exaustão, empregado por Arquimedes no cálculo de áreas de segmentos parabólicos.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.
A história do Cálculo Diferencial Integral
O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração. Calcular áreas já despertava, por suas aplicações práticas, grandes interesses nos gregos da Antiguidade. Apesar de várias fórmulas para o cálculo de áreas de figuras planas serem conhecidas desde esta época, e até mesmo problemas do cálculo de áreas de regiões limitadas por segmentos de retas e algumas curvas, como a parábola, terem sido estudados e resolvidos, para casos particulares, até
...