TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Atps Algebra

Pesquisas Acadêmicas: Atps Algebra. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  8/6/2013  •  248 Palavras (1 Páginas)  •  244 Visualizações

Relatório 3

Para o desenvolvimento da etapa 03 os seguintes passos foram realizados:

1. Desenvolvimento para Figura 1.

Primeiramente dividimos a figura em 03 partes com suas respectivas funções e em seguida calculamos a área de cada parte a figura:

Parte I (y=x) Parte II (y=1/x) Parte III (y=x/4)

Áreas:

Parte I

∫_0^1▒x □(24&dx)=x^2/2 entre [0;1]=1^2/2-0^2/2=1/2 u.a.

Parte II

∫_1^2▒〖1/x dx〗=ln⁡x entre [1;2]=ln2-ln1=0,6931 u.a.

Parte III

∫_0^2▒x/4 dx=∫_0^2▒1/4*x/1=1/4 ∫_0^2▒〖x=〗 1/4*x^2/2=〖x/8〗^2 entre [0;2]=2^2/8-0^2/8=1/2 u.a.

Para acharmos a área solicitada precisamos somar as áresa das partes I e II e em seguida subtrair a área da parte III.

1/2+0,6931-1/2=▭(0,6931 u.a.)

2. Desenvolvimento para Figura 2.

Ao observamos a figura notamos que se trata de uma figura simétrica, desta forma iremos calcula inicialmente a área de apenas uma parte, mas para isso essa parte deverá ser dividida em outras duas com suas respectivas funções.

Parte I Parte I.A A=x*y Parte I.B (y=4/x)

Parte I.A

Por se tratar de um retângulo a área pode ser calculada diretamente pela multiplicação da base e altura.

A=x*y A=1*4 A=4 u.a.

Parte I.B

∫_1^4▒4/x dx=∫_1^4▒4/1*1/x=4∫_1^4▒〖1/x=〗 4*lnx entre [1;4]=4*ln4-4*ln1=5,545 u.a.

Parte I

A=4+5,545 A=9,545 u.a.

Para achamos a área solicitada precisamos multiplicar por 4 a área encontrada de uma das partes.

4*9,545=▭(38,18 u.a.)

...

Disponível apenas no TrabalhosGratuitos.com