TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

A HISTÓRIA DA INTEGRAL

Projeto de pesquisa: A HISTÓRIA DA INTEGRAL. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  23/9/2014  •  Projeto de pesquisa  •  2.238 Palavras (9 Páginas)  •  189 Visualizações

Página 1 de 9

Sumário

INTRODUÇÃO 3

1.HISTÓRIA DA INTEGRAL 3

ETAPA 2 6

2.1 PRIMEIRO PASSO 6

2.1.1. Integração por Partes 6

2.1.2 Integração por substituição 6

2.2 SEGUNDO PASSO 7

2.3 TERCEIRO PASSO 8

2.4 QUARTO PASSO 8

ETAPA4 9

CONCLUSÃO 10

BIBLIOGRAFIA 11

INTRODUÇÃO

1.História da Integral

O cálculo integral se originou com problemas de quadratura e cubatura. Resolver um problema de quadratura significa encontrar o valor exato da área de uma região bidimensional cuja fronteira consiste de uma ou mais curvas, ou de uma superfície tridimensional, cuja fronteira também consiste de pelo menos uma curva. Para um problema de cubatura, queremos determinar o volume exato de um sólido tridimensional limitado, pelo menos em parte, por superfícies curvas. Hoje, o uso do termo quadratura não mudou muito: matemáticos, cientistas e engenheiros comumente dizem que "reduziram um problema a uma quadratura", o que significa que tinham um problema complicado, o simplificaram de várias maneiras e agora o problema pode ser resolvido avaliando uma integral.

Historicamente, Hipócrates de Chios (cerca de 440 A.C.) executou as primeiras quadraturas quando encontrou a área de certas lunas, regiões que se parecem com a lua próxima do seu quarto crescente.

Arquimedes (287--212 A.C.), o maior matemático da antiguidade, usou o método de exaustão para encontrar a quadratura da parábola. Arquimedes aproximou a área com um número grande de triângulos construídos engenhosamente e então usou o argumento da redução ao absurdo dupla para provar o resultado rigorosamente e evitar qualquer metafísica do infinito. Para o círculo, Arquimedes primeiro mostrou que a área depende da circunferência; isto é muito fácil de verificar hoje em dia, uma vez que ambas as fórmulas dependem de π.

Então Arquimedes aproximou a área do círculo de raio unitário usando polígonos regulares de 96 lados inscritos e circunscritos! Seu famoso resultado foi 3 10/71 < π < 3 1/7; mas como estas eram apenas aproximações, no sentido estrito, não eram quadraturas. No seu possivelmente mais famoso trabalho de todos, um tratado combinado de matemática e física, Arquimedes empregou indivisíveis para estimar o centro de gravidade de certas regiões bidimensionais e de certos sólidos tridimensionais. À medida que os europeus começaram a explorar o globo, tornou-se necessário ter um mapa do mundo no qual certas retas representassem rumos sobre a superfície da Terra. Houve diversas soluções para este problema, mas a solução mais famosa foi à projeção de Mercator, embora Gerard Mercator (1512--1594) não tenha explicado seus princípios geométricos.

Aquela tarefa foi assumida por Edward Wright (1561--1615) que, além disso, providenciou uma tabela que mostrava que as distâncias ao longo das retas de rumo seriam bem aproximadas somando os produtos (sec ø ∆ ø), onde ø é a latitude; isto é, aproximando a integral de sec ø.

Em seu New Stereometry of Wine Barrels (Nova Estereometria de Barris de Vinho) (1615), o famoso astrônomo Johannes Kepler (1571--1630) aproximou os volumes de vários sólidos tridimensionais, cada qual era formado girando uma região bidimensional ao redor de um eixo. Para cada um destes volumes de revolução, subdividiu o sólido em várias fatias muito finas ou discos chamados de infinitésimos (note a diferença entre infinitésimos e os indivisíveis de Arquimedes). Então, em cada caso, a soma destes infinitésimos aproximavam o volume desejado. A segunda lei de Kepler do movimento planetário requeria quadraturas de segmentos de uma elipse, e para aproximar estas áreas, somou triângulos infinitesimais.

Bonaventura Cavalieri (1598--1647), um estudante de Galileu, desenvolveu uma teoria de indivisíveis. Para uma região bidimensional, Cavalieri considerou a coleção de "todas as retas" como sendo um único número, a área da região. Christiaan Huygens (1629--1695) criticou, "Sobre os métodos de Cavalieri: alguém se engana se aceitar seu uso como uma demonstração mas são úteis como um meio de descoberta anterior à demonstração... isto é o que vem primeiro...". Evangelista Torricelli (1608--1648), outro discípulo de Galileu e amigo de Cavalieri, tentou resolver algumas das dificuldades com indivisíveis ao afirmar que as retas poderiam ter algum tipo de espessura. Foi cuidadoso para usar argumentos de redução ao absurdo para provar quadraturas que obteve por indivisíveis. O "Chifre de Gabriel" é uma cubatura "incrível" descoberta por Torricelli. Pierre Fermat (1601--1665) desenvolveu uma técnica para encontrar as áreas sob cada uma das "parábolas de ordem superior" (y = kxn, onde k ˃ 0 é constante e n = 2, 3, 4, …) usando retângulos estreitos inscritos e circunscritos para levar ao método de compressão. Então empregou uma série geométrica para fazer o mesmo para cada uma das curvas y = kxn, para n = -2, -3, -4, ... Mas, para sua decepção, nunca foi capaz de estender estes processos para "hipérboles de ordem superior", ym = kxn. Por volta da década de 1640, a fórmula geral para a integral de parábolas de ordem superior era conhecida de Fermat, Blaise Pascal (1623-1662), Gilles Personne de Roberval (1602--1675), René Descartes (1596--1650), Torricelli, Marin Mersenne (1588--1648) e provavelmente outros.

Finalmente, Gregory St. Vincent (1584--1667) determinou a área sob a hipérbole xy = 1, usando retângulos estreitos inscritos e circunscritos de larguras diferentes especialmente desenhados e o método de compressão. St. Vincent estendeu esta e outras quadraturas para encontrar várias cubaturas. Logo depois disto, seu aluno, Alfonso Antônio de Sarasa (1618--1667) reconheceu que a quadratura da hipérbole está intimamente ligada à propriedade do produto do logaritmo!. O termo integral, como usamos em cálculo, foi cunhado por Johann Bernoulli (1667--1748) e publicado primeiramente por seu irmão mais velho Jakob Bernoulli (1654--1705). Principalmente como uma consequência do poder do Teorema Fundamental do Cálculo de Newton e Leibniz, integrais era considerada simplesmente como derivada “inversa”. A área era uma noção intuitiva, quadraturas

...

Baixar como (para membros premium)  txt (15 Kb)  
Continuar por mais 8 páginas »
Disponível apenas no TrabalhosGratuitos.com