TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Atps Calculo Etapa 1 E 2

Trabalho Universitário: Atps Calculo Etapa 1 E 2. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  25/11/2013  •  1.589 Palavras (7 Páginas)  •  571 Visualizações

Página 1 de 7

ETAPA 1:

INTEGRAL DEFINIDA E INDEFINIDA

O Cálculo Integral: alguns fatos históricos . Os primeiros problemas que apareceram na História relacionados com as integrais são os problemas de quadratura. Um dos problemas mais antigos enfrentados pelos gregos foi o da medição de superfícies a fim de encontrar suas áreas. Quando os antigos geômetras começaram a estudar as áreas de figuras planas, eles as relacionavam com a área do quadrado, por ser essa a figura plana mais simples. Assim, buscavam encontrar um quadrado que tivesse área igual à da figura em questão.A palavra quadratura é um termo antigo que se tornou sinônimo do processo de determinar áreas.

Quadraturas que fascinavam os geômetras eram as de figuras curvilíneas, como o círculo, ou figuras limitadas por arcos de outras curvas. As lúnulas - regiões que se assemelham com a lua no seu quarto-crescente - foram estudadas por Hipócrates de Chios, 440 a.C., que realizou as primeiras quadraturas da História. Antifon, por volta de 430 a.C., procurou encontrar a quadratura do círculo através de uma sequência infinita de polígonos regulares inscritos: primeiro um quadrado, depois um octógono, em seguida um hexadecágono, e assim por diante. Havia, entretanto, um problema: essa sequência nunca poderia ser concluída. Apesar disso, essa foi uma ideia genial que deu origem ao método da exaustão. Nesse contexto, uma das questões mais importantes, e que se constituiu numa das maiores contribuições gregas para o Cálculo, surgiu por volta do ano 225 a.C. Trata-se de um teorema de Arquimedes para a quadratura da parábola.

Algumas "integrações" foram realizadas por Arquimedes a fim de encontrar o volume da esfera e a área da superfície esférica, o volume do cone e a área da superfície cônica, a área da região limitada por uma elipse, o volume de um parabolóide de revolução e o volume de um hiperbolóide de revolução. Em seus cálculos, Arquimedes encontrava somas com um número infinito de parcelas. O argumento utilizado era a dupla reductio ad absurdum para "escapar" da situação incômoda. Basicamente, se não podia ser nem maior, nem menor, tinha que ser igual. A contribuição seguinte para o Cálculo Integral apareceu somente ao final do século XVI quando a Mecânica levou vários matemáticos a examinar problemas relacionados com o centro de gravidade. Os próximos matemáticos que tiveram grande contribuição para o nascimento do Cálculo Integral foram Fermat e Cavalieri. Em sua obra mais conhecida, Geometria indivisibilibus continuorum nova, Cavalieri desenvolveu a ideia de Kepler sobre quantidades infinitamente pequenas. Aparentemente, Cavalieri pensou na área como uma soma infinita de componentes ou segmentos "indivisíveis" INTEGRAIS DEFINIDAS .

Ele mostrou, usando os seus métodos, o que hoje em dia escrevemos:

.

Todo o processo geométrico desenvolvido por Cavalieri foi então aritmetizado por Wallis. Em 1655, em seu trabalho Arithmetica infinitorum, Wallis desenvolveu princípios de indução e interpolação que o levaram a encontrar diversos resultados importantes, entre eles, a antecipação de parte do trabalho de Euler dobre a função gamma.

Fermat desenvolveu uma técnica para achar a área sob cada uma das, então chamadas, "parábolas maiores": curvas do tipo , onde é constante e n=2,3,4, etc. Empregou então uma série geométrica para fazer o mesmo para cada uma das curvas do tipo , onde e n=-2,-3,-4,etc. Por volta de 1640, a fórmula geral da integral das parábolas maiores era conhecida por Fermat, Blaise Pascal, Descartes, Torricelli e outros.

Newton continuou os trabalhos de Barrow e Galileo sobre o estudo do movimento dos corpos e desenvolveu o Cálculo aproximadamente dez anos antes de Leibniz. Ele desenvolveu os métodos das fluxions - derivação - e fluents - integração - e utilizou-os na construção da mecânica clássica. Para Newton, a integração consistia em achar fluents para um dado fluxion considerando, desta maneira, a integração como inversa da derivação INTEGRAL INDEFINIDA .

Com efeito, Newton sabia que a derivada da velocidade, por exemplo, era a aceleração e a integral da aceleração era a velocidade.

Newton representava as integrais por um acento grave acima da letra em questão, por exemplo, a integral de y era representada por `y.

Leibniz, diferentemente de Newton, usava a integração como uma soma, de uma maneira bastante parecida à de Cavalieri. Daí vem o símbolo - um 's' longo - para representar summa . Segundo ele, "represento a área de uma figura “ pela soma das áreas de todos os retângulos infinitesimais definidos pelas ordenadas e pelas diferenças entre as abscissas... e portanto eu represento em meu cálculo a área da figura por ".

Ambos desenvolveram o Cálculo Integral separadamente, entretanto Newton via o Cálculo como geométrico, enquanto Leibniz o via mais como analítico.

Leibiniz acreditava que a notação era de fundamental importância e, de fato, a sua notação foi mais eficaz do que a de Newton e acabou por se consolidar, sendo utilizada até os dias de hoje, mantendo exatamente a mesma forma. Os trabalhos de Leibniz sobre o Cálculo Integral foram publicados em 1684 e em 1686 sob o nome Calculus Summatorius . O nome Cálculo Integral foi criado por Johann Bernoulli e publicado pela primeira vez por seu irmão mais velho Jacques Bernoulli em 1690.

Principalmente como consequência do Teorema Fundamental do Cálculo de Newton, as integrais foram simplesmente vistas como derivadas "reversas". Na mesma época da publicação das tabelas de integrais de Newton, Johann Bernoulli descobriu processos sistemáticos para integrar todas as funções racionais, que é chamado método das frações parciais. Essas idéias foram resumidas por Leonard Euler, na sua obra sobre integrais.

Após o estabelecimento do Cálculo, Euler daria continuidade ao estudo de funções - ainda prematuro na época - juntamente com Cauchy, Gauss e Riemann. Foi Euler, entretanto, quem reuniu todo o conhecimento até então desenvolvido e criou os fundamentos da Análise.

Hoje em dia o Cálculo Integral é largamente utilizado em várias áreas do conhecimento humano e aplicado para a solução de problemas não só de Matemática, mas de Física, Astronomia, Economia, Engenharia, Medicina, Química, por exemplo.

ETAPA 1.

Passo 2 :

Desafio A :

Resolução:

...

Baixar como (para membros premium)  txt (8.7 Kb)  
Continuar por mais 6 páginas »
Disponível apenas no TrabalhosGratuitos.com