TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

História da teoria da probabilidade

Artigo: História da teoria da probabilidade. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  27/8/2014  •  Artigo  •  418 Palavras (2 Páginas)  •  299 Visualizações

Página 1 de 2

PROBABILIDADE

A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade. A teoria da probabilidade permite que se calcule a chance de ocorrência de um número em um experimento aleatório.

Experimento Aleatório

É aquele experimento que quando repetido em iguais condições, podem fornecer resultados diferentes, ou seja, são resultados explicados ao acaso. Quando se fala de tempo e possibilidades de ganho na loteria, a abordagem envolve cálculo de experimento aleatório.

Espaço Amostral

É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

Exemplo:

Lançando uma moeda e um dado, simultaneamente, sendo S o espaço amostral, constituído pelos 12 elementos:

S = {K1, K2, K3, K4, K5, K6, R1, R2, R3, R4, R5, R6}

Escreva explicitamente os seguintes eventos: A={caras e m número par aparece}, B={um número primo aparece}, C={coroas e um número ímpar aparecem}.

Idem, o evento em que:

a) A ou B ocorrem;

b) B e C ocorrem;

c) Somente B ocorre.

Quais dos eventos A,B e C são mutuamente exclusivos

Resolução:

Para obter A, escolhemos os elementos de S constituídos de um K e um número par: A={K2, K4, K6};

Para obter B, escolhemos os pontos de S constituídos de números primos: B={K2,K3,K5,R2,R3,R5}

Para obter C, escolhemos os pontos de S constituídos de um R e um número ímpar: C={R1,R3,R5}.

(a) A ou B = AUB = {K2,K4,K6,K3,K5,R2,R3,R5}

(b) B e C = B Ç C = {R3,R5}

(c) Escolhemos os elementos de B que não estão em A ou C;

B Ç Ac Ç Cc = {K3,K5,R2}

A e C são mutuamente exclusivos, porque A Ç C = Æ

Conceito de probabilidade

Se em um fenômeno aleatório as possibilidades são igualmente prováveis, então a probabilidade de ocorrer um evento A é:

Por, exemplo, no lançamento de um dado, um número par pode ocorrer de 3 maneiras diferentes dentre 6 igualmente prováveis, portanto, P = 3/6= 1/2 = 50%

Dizemos que um espaço amostral S (finito) é equiprovável quando seus eventos elementares têm probabilidades iguais de ocorrência.

Num

...

Baixar como (para membros premium)  txt (2.4 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com