TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Metodos Numericos

Por:   •  29/5/2015  •  Abstract  •  809 Palavras (4 Páginas)  •  580 Visualizações

Página 1 de 4

CENTRO UNIVERSITÁRIO DE SETE LAGOAS Unidade Acadêmica de Ensino de Ciências Gerenciais Engenharia Elétrica

DANIEL JORGE LOPES DE OLIVEIRA

MÉTODOS NÚMERICOS Lista de exercícios


DANIEL JORGE LOPES DE OLIVEIRA

LISTA DE EXERCÍCIOS: métodos numéricos

Trabalho apresentado ao curso Engenharia Civil, da Unidade Acadêmica de Ensino de Ciências Gerenciais, do Centro Universitário de Sete Lagoas, como requisito parcial de avaliação da disciplina Métodos numéricos.

FINALIDADE: Desenvolver os conhecimento aprendidos da disciplina Métodos numéricos.


EXERCÍCIOS

01) Isole as raízes das funções abaixo por meio da análise gráfica (é necessário plotar os gráficos).

a)  �(��) =  � 𝑥   − 3|��|

Lista de comandos no Scilab:

Graficos de 𝑥    � 3|��|[pic 1][pic 2]

b)  �(��) = �����(��) −  𝑥

2


Comandos gráfico de senx  e x/2

[pic 3]

Graficos de senx e de x/2

c)  �(��) = 2� 𝑥   − 𝑥  − 3[pic 4]

Comando Scilab gráfico de 2exp(x) e x+3


[pic 5]

Gráfico das funções 2exp(x) e x+3

[pic 6]

02) Seja �(��) = 2𝑥  − 5𝑥 2

a)  Isole as raízes por meio de análise gráfica;

[pic 7]


[pic 8]

b)  Quantas iterações são necessárias para determinar com precisão de 10−2 por meio

do método da Bissecção.

�𝑛   0 . 8 −  0 . 2

⁄    )

� > (


0.01

ln 2

� > (���60⁄ln 2)

� > 5,90

K=6 iterações

c)  Resolva, pelo método da Bissecção, tendo como critério de parada K=10 interações ou ε = 0.01.

K

A

F(Xa)

B

F(Xb)

Xn

F(Xn)

Erro

1

0,2

0,948698

0,8

-1,4589

0,5

0,164214

-

2

0,5

0,164214

0,8

-1,4589

0,65

-0,54333

0,15

3

0,5

0,164214

0,65

-0,54333

0,575

-0,16345

0,075

4

0,5

0,164214

0,575

-0,16345

0,5375

0,006924

0,0375

5

0,5375

0,006924

0,575

-0,16345

0,55625

-0,07663

0,01875

6

0,5375

0,006924

0,55625

-0,07663

0,546875

-0,03444

0,009375


03) Use algum método de soluções de equações para calcular 5√5 com precisão de 0.01 ou 5[pic 9]

interações.

√5 = 𝑥[pic 10]

5

𝑥 5  = 5


=−4


�(2) = 27

𝑥 5 − 5 = 0


�(1) × �(2) = −108 < 0

Logo existe raiz entre[1,2].

Usando o método da Bissecção, temos:

K

A

F(Xa)

B

F(Xb)

Xn

F(Xn)

Erro

1

1

-4

2

27

1,5

2,59375

1

2

1

-4

1,5

2,59375

1,25

-1,94824

0,5

3

1,25

-1,94824

1,5

2,59375

1,375

-0,08511

0,25

4

1,375

-0,08511

1,5

2,59375

1,4375

1,138175

0,125

5

1,375

-0,08511

1,4375

1,138175

1,40625

0,499367

0,0625

6

1,375

-0,08511

1,40625

0,499367

1,390625

0,200561

0,03125

7

1,375

-0,08511

1,390625

0,200561

1,382813

0,05611

0,015625

8

1,375

-0,08511

1,382813

0,05611

1,378906

-0,0149

0,007813

X=1,378906.

...

Baixar como (para membros premium)  txt (8 Kb)   pdf (889.6 Kb)   docx (215.3 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com