TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Noções básicas Matematica

Abstract: Noções básicas Matematica. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  25/2/2015  •  Abstract  •  524 Palavras (3 Páginas)  •  232 Visualizações

Página 1 de 3

NOÇÕES BÁSICAS

Conceito: a MATEMÁTICA FINANCEIRA tem por objetivo estudar as diversas formas de evolução do valor do dinheiro no tempo, bem como as formas de análise e comparação de alternativas para aplicação / obtenção de recursos financeiros.

Capital: é qualquer valor expresso em moeda (dinheiro ou bens comercializáveis) disponível em determinada época. Referido montante de dinheiro também é denominado de capital inicial ou principal.

Juros: é o aluguel que deve ser pago ou recebido pela utilização de um valor em dinheiro durante um certo tempo; é o rendimento em dinheiro, proporcionado pela utilização de uma quantia monetária, por um certo período de tempo.

Taxa de Juros: é um coeficiente que corresponde à razão entre os juros pagos ou recebidos no fim de um determinado período de tempo e o capital inicialmente empatado.

Exemplo:

Capital Inicial : $ 100

Juros : $ 150 - $ 100 = $ 50

Taxa de Juros: $ 50 / $ 100 = 0,5 ou 50 % ao período

a taxa de juros sempre se refere a uma unidade de tempo (dia, mês, ano, etc) e pode ser apresentada na forma percentual ou unitária.

Taxa de Juros unitária: a taxa de juros expressa na forma unitária é quase que exclusivamente utilizada na aplicação de fórmulas de resolução de problemas de Matemática Financeira; para conseguirmos a taxa unitária ( 0.05 ) a partir da taxa percentual ( 5 % ), basta dividirmos a taxa percentual por 100: 5 % / 100 = 0.05

Montante: denominamos Montante ou Capital Final de um financiamento (ou aplicação financeira) a soma do Capital inicialmente emprestado (ou aplicado) com os juros pagos (ou recebidos).

Capital Inicial = $ 100

+ Juros = $ 50

= Montante = $ 150

Regimes de Capitalização: quando um capital é emprestado ou investido a uma certa taxa por período ou diversos períodos de tempo, o montante pode ser calculado de acordo com 2 regimes básicos de capitalização de juros: • capitalização simples; • capitalização composta;

Capitalização Simples: somente o capital inicial rende juros, ou seja, os juros são devidos ou calculados exclusivamente sobre o principal ao longo dos períodos de capitalização a que se refere a taxa de juros

Capitalização Composta: os juros produzidos ao final de um período são somados ao montante do início do período seguinte e essa soma passa a render juros no período seguinte e assim sucessivamente. Comparando-se os 2 regimes de capitalização, podemos ver que para o primeiro período considerado, o montante e os juros são iguais, tanto para o regime de capitalização simples quanto para o regime de capitalização composto; Salvo aviso em contrário, os juros devidos no fim de cada período (juros postecipados) a que se refere a taxa de juros. No regime de capitalização simples, o montante evolui como uma progressão aritmética, ou seja, linearmente, enquanto que no regime de capitalização composta o montante evolui como uma progressão

...

Baixar como (para membros premium)  txt (3.2 Kb)  
Continuar por mais 2 páginas »
Disponível apenas no TrabalhosGratuitos.com