TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Patrao X Empregador

Casos: Patrao X Empregador. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  25/9/2014  •  776 Palavras (4 Páginas)  •  267 Visualizações

Página 1 de 4

estudos das funções estão relacionados às questões que envolvem relações entre grandezas e sua aplicabilidade abrange inúmeras ciências. Enfatizaremos a função custo, função receita e a função lucro que estão relacionadas aos fundamentos administrativos de qualquer empresa.

Função Custo – C(x)

Está relacionada ao custo de produção de um produto, pois toda empresa realiza um investimento na fabricação de uma determinada mercadoria.

Função Receita – R(x)

A função receita está ligada ao dinheiro arrecadado pela venda de um determinado produto.

Função Lucro – L(x)

A função lucro é a diferença entre a função receita e a função custo. Caso o resultado seja positivo, houve lucro; se negativo, houve prejuízo.

L(x) = R(x) – C(x)

Exemplo 1

Um fabricante pode produzir calçados ao custo de R$ 20,00 o par. Estima-se que, se cada par for vendido por x reais, o fabricante venderá por mês 80 – x (0 ≤ x ≤ 80) pares de sapatos. Assim, o lucro mensal do fabricante é uma função do preço de venda. Qual deve ser o preço de venda, de modo que o lucro mensal seja máximo?

Custo: valor de produção de cada par de sapatos vezes o número de sapatos fabricados.

C(x) = 20*(80 – x)

Receita: número de sapatos vendidos no mês multiplicado pelo valor de venda x.

R(x) = (80 – x) * x

Lucro: diferença entre a receita R(x) e o custo C(x)

L(x) = (80 – x) * x – 20*(80 – x)

L(x) = 80x – x² – 1600 + 20x

L(x) = – x² +100x – 1600

O lucro dado é representado por uma função do 2º grau decrescente, isto é, seu gráfico possui concavidade voltada para cima ou valor máximo. Para determinarmos o preço de venda do sapato, no intuito de obter o lucro máximo, basta calcular o valor do vértice x da parábola, dado por Xv = – (b/2a).

L(x) = – x² +100x – 1600

a = – 1

b = 100

c = – 1600

Para que se obtenha lucro máximo, o preço de venda do par de sapatos deve ser R$ 50,00.

Exemplo 2

Um fabricante vende, mensalmente, x unidades de um determinado artigo por R(x) = x² – x, sendo o custo da produção dado por C(x) = 2x² – 7x + 8. Quantas unidades devem ser vendidas mensalmente, de modo que se obtenha o lucro máximo?

L(x) = R(x) – C(x)

L(x) = x² – x – (2x² – 7x + 8)

L(x) = x² – x – 2x² + 7x – 8

L(x) = – x² + 6x – 8

O número de unidades vendidas mensalmente para se obter o lucro máximo será determinado por Xv.

Para se obter o lucro máximo, basta que 3 unidades sejam vendida

Matemática na Economia: Função Custo, Função Receita e Função Lucro

Uma importante aplicação da Matemática está presente na Economia através das Funções Custo, Receita e Lucro.

Função Custo

A função custo está relacionada

...

Baixar como (para membros premium)  txt (4.6 Kb)  
Continuar por mais 3 páginas »
Disponível apenas no TrabalhosGratuitos.com