Uma integral definida e uma integral indefinida
Seminário: Uma integral definida e uma integral indefinida. Pesquise 862.000+ trabalhos acadêmicosPor: rosembergpessoa • 12/11/2013 • Seminário • 1.863 Palavras (8 Páginas) • 414 Visualizações
Cascavel – Paraná - 01 de novembro de 2013
Introdução
E com base nesse trabalho de calculo III, (atividades praticas supervisionadas) que iremos comentar sobre Integral Definida e Integral Indefinida. Iremos falar sobre suas importâncias aplicadas no dia a dia, e principalmente nos ramos de curso de engenharia aonde o foco é o principal do conteúdo.
A atividade prática supervisionada (ATPS) é um método de ensino-aprendizagem desenvolvido por meio de um conjunto de atividades programadas e supervisionadas e que tem por objetivos, favorecer a aprendizagem, estimular a responsabilidade do aluno pelo aprendizado eficiente e eficaz, promover o estudo, a convivência e o trabalho em grupo, desenvolver os estudos independentes, sistemáticos e o auto-aprendizado, oferecer diferenciados ambientes de aprendizagem, auxiliar no desenvolvimento das competências requeridas pelas diretrizes curriculares nacionais dos cursos de graduação, promover a aplicação da teoria e conceitos para a solução de problemas relativos à profissão.
Etapa 1: (tempo para realização: 05 horas)
Aula tema: integral definida e integral indefinida.
Esta etapa é importante para você fixe, de forma prática, a teoria de integrais indefinidas e definidas, desenvolvida previamente em sala de aula pelo professor da disciplina. Você também irá aprender o conceito de integral como função inversa da derivada.
Para realizá-la, devem ser seguidos os passos descritos.
PASSOS:
Passo 1 (Equipe).
Elaboração de um texto dissertativo contendo informações ligadas ao estudo e utilização da teoria de integrais indefinidas e, definidas e cálculo de áreas.
Integral
No cálculo, a integral de uma função foi criada originalmente para determinar a área sob uma curva no plano cartesiano e também surge naturalmente em dezenas de problemas de Física, como por exemplo, na determinação da posição em todos os instantes de um objeto, se for conhecida a sua velocidade instantânea em todos os instantes. O processo de se calcular a integral de uma função é chamado de integração.
Diferentemente da noção associada de derivação, existem várias definições para a integração, todas elas visando a resolver alguns problemas conceituais relacionados a limites, continuidade e existência de certos processos utilizados na definição. Estas definições diferem porque existem funções que podem ser integradas segundo alguma definição, mas não podem segundo outra.
A idéia básica do conceito de integral já estava embutida no método da exaustão atribuído a Eudoxo (406-355 a.C.), desenvolvido e aperfeiçoado por Arquimedes (287-212 a.C.), grande matemático da escola de Alexandria.
O inconveniente do método de exaustão de Arquimedes é que para cada novo problema havia a necessidade de um tipo particular de aproximação. Por exemplo, para obter a área de uma região localizada sob um segmento de parábola ACB, Arquimedes usou como primeira aproximação o triângulo ABC, em que C foi tomado de modo que a reta tangente da parábola que passa pelo ponto C seja paralela à reta AB.
De modo semelhante é escolhida os pontos D e E, foram construídos os triângulos ACD e BCE.
Na seqüência foram construídos mais triângulos com as mesmas propriedades que os outros obtidos nos passos anteriores, daí Observamos que tais triângulos estão exaurindo a área da região parabólica dos mesmos.
O Cálculo Diferencial e Integral foi criado por Isaac Newton (1642-1727) e Wilhelm Leibniz (1646-1716). O trabalho destes cientistas foi uma sistematização de idéias e métodos surgidos principalmente ao longo dos séculos XVI e XVII, os primórdios da chamada era da Ciência Moderna, que teve início com a Teoria heliocêntrica de Copérnico (1473-1543).
O que permitiu a passagem do método de exaustão para o conceito de integral foi à percepção que em certos casos, a área da região pode ser calculada sempre com o mesmo tipo de aproximação por retângulos.
Esta foi uma descoberta conceitual importante, mas em termos práticos, a descoberta fundamental foi à possibilidade de exprimir a integral de uma função em termos de uma primitiva da função dada e este fato é conhecido pelo nome de Teorema Fundamental do Cálculo. Estas idéias serão aqui expostas, mas observamos que o conceito de integral pode ser introduzido de várias formas, todas elas tendo em comum a mesma idéia geométrica, mas que se diferenciam pelo rigor matemático utilizado. Neste caso ocorre um problema usual em Matemática: quanto menos rigorosa ou formal é a conceituação de um objeto matemático, mais simples é a sua compreensão, porém é mais inadequada ou de conhecimento inatingível para um ser humano comum, em função das propriedades que decorrem do processo conceitual utilizado.
A idéia ou o conceito de integral foi formulado por Newton e Leibniz no século XVII, mas a primeira tentativa de uma conceituação precisa foi feita por volta de 1820, pelo matemático francês Augustin Louis Cauchy (1789-1857). Os estudos de Cauchy foram incompletos, mas muito importantes por terem dado início à investigação sobre os fundamentos do Cálculo Integral, levando ao desenvolvimento da Análise Matemática e da teoria das funções.
Por volta de 1854, o matemático alemão Bernhard Riemann (1826-1866) realizou um estudo bem mais aprofundado sobre a integral e em sua homenagem a integral estudada por ele passou a receber o nome de Integral de Riemann. Tal nome serve para distinguir essa integral de outras que foram introduzidas mais tarde, como por exemplo, a Integral de Lebesgue. A forma usada para introduzir o conceito de Integral de Riemann nos cursos de Cálculo é a versão devida a Cauchy.
Integral Definida:
S é a integral da função f(x), no intervalo entre a e b.é o sinal da integral, f(x) é o integrando e os pontos a e b são os limites (inferior e superior, respectivamente) de integração. f é uma função com domínio no espaço fechado [a, b] e com imagem no conjunto dos números reais A idéia desta notação é utilizando um S comprido é generalizar a noção de somatório. Isto porque intuitivamente a integral de f(x) pode ser entendida como a soma de pequenos retângulos de base tendendo a zero e altura onde o produto
...