TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

INTEGRAL DEFINIDA E INDEFINIDA

Tese: INTEGRAL DEFINIDA E INDEFINIDA. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  25/9/2013  •  Tese  •  1.041 Palavras (5 Páginas)  •  493 Visualizações

Página 1 de 5

ETAPA 1:

INTEGRAL DEFINIDA E INDEFINIDA

PASSO 1:

1) Resolução:

Segundo pesquisa na internet: o cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Também que a integral indefinida pode ser chamada de antiderivada, uma vez que é um processo que inverte a derivada de funções. Enquanto a integral definida, inicialmente definida como soma de Riemann, estabelece limites de integração, ou seja, é um processo estabelecido entre dois intervalos bem definidos, daí o nome integral definida.

O "Teorema Fundamental do Cálculo" estabeleceu-se uma conexão entre os dois ramos do cálculo: o Cálculo Diferencial e o Cálculo Integral. O cálculo diferencial surgiu do problema da tangente, enquanto o cálculo integral surgiu de um problema aparentemente não relacionado, o problema da área. O professor de Isaac Newton em Cambridge, Isaac Barrow, descobriu que esses dois problemas estão de fato estritamente relacionados, ao perceber que a derivação e a integração são processos inversos. Foram Leibniz e Newton que exploraram essa relação e a utilizaram para transformar o cálculo em um método matemático sistemático. Particularmente ambos viram que o Teorema Fundamental os capacitou a calcular áreas e integrais muito mais facilmente, sem que fosse necessário calculá-las como limites de soma (método descrito pelo matemático Riemann, pupilo de Gauss).

Referente a área é um conceito matemático que pode ser definida como quantidade de espaço bidimensional, ou seja, de superfície. Existem várias unidades de medida de área, sendo a mais utilizada o metro quadrado (m²) e os seus múltiplos e sub-múltiplos. São também muito usadas as medidas agrárias: are, que equivale a cem metros quadrados; e seu múltiplo hectare, que equivale a dez mil metros quadrados. Outras unidades de medida de área são o acre e o alqueire.

Na geografia e cartografia o termo "área" corresponde à projeção num plano horizontal de uma parte da superfície terrestre. Assim, a superfície de uma montanha poderá ser inclinada, mas a sua área é sempre medida num plano horizontal.

Fonte: Wikipédia

2) Resolução:

História da Integral:

A história mostra que o cálculo integral se originou com problemas de quadratura e cubatura. Resolvendo o problema de medição da área de uma região bidimensional. Para muitos matemáticos, cientistas e engenheiros a integral simplifica os problemas complicados. Historicamente, existem inúmeras contribuições dos matemáticos no cálculo, tais como:

- Hipócrates de Chios (cerca de 440 A.C.) quem executou as primeiras quadraturas quando encontrou a área de certas lunas.

- Antiphon (cerca de 430 A.C.) afirmava que poderia "quadrar o círculo" ou encontrar sua área, usando uma sequência infinita de polígonos regulares inscritos.

- Eudoxo (cerca de 370 A.C.) usou um método chamado de exaustão.

- Arquimedes (287--212 A.C.), conhecido como o maior matemático da antiguidade, usou o método de exaustão para encontrar a quadratura da parábola. Arquimedes primeiro mostrou que a área depende da circunferência. Seu mais famoso trabalho de todos, foi um tratado combinado de matemática e física, Arquimedes empregou indivisíveis para estimar o centro de gravidade.

Outros matemáticos surgiram, depois de Arquimedes, como o árabe Thabit ibn Qurrah (826--901) quem desenvolveu sua própria cubatura. Assim também o cientista persa Abu Sahl al-Kuhi (século 10) quem simplificou consideravelmente o processo de Thabit Ibn. O matemático Al-Haytham (965--1039), mais conhecido no ocidente como Alhazen e quem chegou a ser famoso por seu trabalho em ótica. E assim em diante, muitos outros matemáticos, estudantes, cientistas, etc. trabalharam ao longo da história para construir o caminho que hoje facilita o cálculo integral em diversos ambientes, sendo usada como uma ferramenta de auxilio.

Fonte: Wikipédia.

ETAPA – 1

DESAFIO A:

Qual das alternativas abaixo representa a integral indefinida de: a³3+3a³+3ada?

a³3da+ 3a³da + 3a da

a³ . 13 da + 3 . 1a³ da + 3 . 1a da

13 a³da + 3 1a³ da + 3 1a da

13 . a3+13+1 +3. a-3+1-3+1+ 3 .lna+c

a412+ 3 a-2-2+ 3lna+c

a412- 32a2+3lna +C

A alternativa que representa a integral indefinida correta é a letra “ B”.

DESAFIO B:

Suponha que o processo de perfuração de um poço de petróleo tenha um custo fixo de U$ 10.000 e um custo marginal de C¢(q) =1000 + 50q dólares por pé, onde q é a profundidade em pés. Sabendo que C(0) = 10.000 , a alternativa que expressa C(q) , o custo total para se perfurar q pés, é:

C(q) = 1000+50q

1000 dq+ 50q dq

1000 dq + 50 q

...

Baixar como (para membros premium)  txt (6.7 Kb)  
Continuar por mais 4 páginas »
Disponível apenas no TrabalhosGratuitos.com