Fractais
Por: dayana.souza • 12/11/2015 • Trabalho acadêmico • 1.745 Palavras (7 Páginas) • 384 Visualizações
[pic 1]
UNIVERSIDADE PAULISTA
INSTITUTO DE CIÊNCIAS SOCIAIS E COMUNICAÇÃO – ICSC
CURSO DE ADMINISTRAÇÃO
METODOLOGIA DO TRABALHO ACADEMICO
CAMPUS CHÁCARA STO ANTONIO
2015
Componentes do grupo:
- Bruna Almeida Costa B597BA-1
- Dayana Nakashima Souza B732HI-5
- Jessica Maria de Carvalho B642IC-4
FRACTAIS
São Paulo, 16 de março de 2015
Conteúdo
INTRODUÇÃO
CONSIDERAÇÕES GERAIS
Perspectiva Filosófica
Perspectiva Prática
O Pai dos Fractais
Geometria Fractal
Referencias Bibliográficas
FRACTAIS – A LINGUAGEM DO CAOS
"Anais do Clube Militar Naval"
Alberto Mesquita e Manuel G. Mota
INTRODUÇÃO
A Geometria Caos- fractais é o principal assunto abordado por vários cientistas do mundo, chamando a atenção por ser uma ferramenta que pode ser utilizada no ramo de ciências sociais, como uma importante comunicação entre especialistas de diversas áreas.
São considerados caóticos os fenômenos que apresentam a geometria fractal, num ambiente escasso de formas geométricas perfeitas, onde o que toma conta são superfícies irregulares, difíceis de representar ou medir.
“Ciência do Caos” é considerado um sistema dinâmico não-linear inovado, criado por formas fractais, associadas a velocidade e capacidade gráfica de um computador, podendo ser comparado com uma turbulência de ar, ou até atrito.
Pode-se considerar que as praticas fractais esta crescendo cada vez mais, alem de ser uma ferramenta cientifica, em pouco tempo será grade curricular de cursos referentes à tecnologia da informação e ciência da computação, contribuindo de uma forma importante para divulgação das suas imagens diferentes e curiosas. Tendo como intenção dos criadores repassarem idéias e fundamentos que irão despertar no público alvo conceitos importantes e curiosidades sobre o assunto.
CONSIDERAÇÕES GERAIS
A palavra Fractal tem como significado “quebrar”, sendo o principal tema abordado por vários pontos de vista. Foi criada por B. Mandelbrot em 1975, derivada do Latim “fractus”.
Perspectiva Matemática
Muitos matemáticos se sentiram espantados e confrontados com os fractais, por suas técnicas e imagens utilizadas que não poderiam ser justificadas e nem explicadas por situações estudadas em tempos passados. Dessa forma, os Cientistas e estudiosos tentam encontrar através dos fractais, com a utilização de computadores sentido para vários resultados, enquanto outros continuam com demonstrações e definições por meios de métodos matemáticos tradicionais. Sendo assim, ainda existem estudiosos que identificam a Geometria fractal como um ramo matemático, com todas as suas características e regras já estabelecidas, que alem de suas particularidades não deixa de ser um amplo conhecimento da Matemática.
A Geometria Fractal chama mais atenção por ser consideradas formas de desenhos artísticos e lúcidos, podendo ser produzida por qualquer pessoa que entende do assunto e possua um computador com processador bom, criando imagens interessantes, belas e atraentes, permitindo que cada um utilize a criatividade através de cores e dimensões, e faça seu próprio fractal, descobrindo imagens sempre diferentes, pois os fractais são de modelos infinitos.
Essas imagens podem gerar diversas formas, sendo ampliadas, reduzidas e aos poucos formando imagens de números infinitos, deixando assim surpresos os criadores a cada nova imagem gerada, aproveitando para utilizar a criatividade para criação de cenários fictícios para filmes com paisagens de outros planetas, ou ate mesmo obras de arte. Para criação dos fractais é utilizado diversas operações no computador, que mesmo sendo usados algoritmos matemáticos simples, podem levar varias horas para concluir-lo.
Perspectiva Filosófica
Existem duas maneiras diferentes de encarar o universo, sendo uma delas a determinista, que diz que se em algum momento fosse possível provar sobre a posição e velocidade das partículas que formam o universo, seria possível prever com a maior certeza, os acontecimentos dos próximos minutos, ou seja, do futuro. A outra seria a teoria quântica, que ao contrario da determinista, relata a incerteza sobre a velocidade e posição dos planetas que compõe o universo, afirmando que os fenômenos são aleatórios e imprevisíveis. Com relação a este assunto, a Ciência de Caos, acredita que existe “ elevada sensibilidade a variações das condições iniciais”, respondendo assim a maneira de pensar de Poncaré em 1903.
O que mais impressiona os pesquisadores é o fato de algoritmos comuns que formam os fractais, representarem os fenômenos naturais, podendo ser criado de diversas formas, sendo para criação de imagens de montanhas, com rios ou nuvens, outro sendo utilizado para gerar animais aquáticos diferentes, de uma forma tão real que se torna curioso para muitos estudiosos da matemática comum.
Perspectiva Prática
Abaixo segue exemplos de que a aplicação pratica dos fractais podem ser representadas por fenômenos naturais:
- Michael Barnsley desenvolveu sistemas que permitem compressões com razões até 10000 para 1, apresentando esse mesmo sistema através de 40 minutos de imagens, contidas em um disquete de 1,4 MB, codificando assim todas as informações contidas.
- Como um principal exemplo de características fractais, temos a superfície dos elétrodos de uma bateria, pois é mantido uma semelhança para diversas escalas de ampliação, afetando as interações químicas e físicas, que estão em contato com essa superfície alterando as leis tradicionais, sendo necessário a utilização das técnicas fractais.
- A Geometria Fractal deve ser reconhecia como uma matéria multidisciplinar, de uma importância imensa pelo fato de ser exposto esse assunto de forma abrangente, sendo utilizado também em estudos dos fenômenos geológicos.
O Pai dos Fractais
Matemático Benoit Mandelbrot relacionava as formas geométricas com a biologia, física, astronomia e sistema financeiro. Criou o termo fractal para descrever os fragmentos irregulares das formas geométricas em diferentes escalas.
O conjunto de Mandelbrot é a imagem mais conhecida criada pelo matemático através do computador com a finalidade de mostrar círculos e quase círculos de forma ornamentada e em escalas infinitas.
De acordo com a entrevista de Paulo Mors, segue exemplo sobre o Conjunto de Mandelbrot ecomo os pontos complexos podem constituir um fractal:
“... Imagine que você tenha descoberto um investimento fantástico, que, para cada valor em reais aplicado, retorna, depois de certo tempo, o quadrado desse valor mais um valor constante. Por exemplo, se esse valor constante for de R,00, então, ao aplicar um real, você terá um retorno de 12+1 = dois reais. Se, agora, você reaplicar o retorno, obterá um valor de 22+1 = 5 reais. Prosseguindo, você poderá aumentar seu investimento inicial para 52+1 = 26 reais, 262+1 = 677 reais, e assim sucessivamente. Este é um exemplo de um processo iterativo: cada valor obtido é novamente submetido à regra estabelecida, para se obter um novo valor. Nesse exemplo, se você dispuser do tempo necessário, acabará lucrando qualquer valor que pretender. “
O fractal não perde sua forma, mesmo sendo ampliado, continua com seu formato idêntico ao original. Sua complexidade infinita e auto semelhança caracterizam as formas dos fractais.
A Dimensão dos fractais não necessita de uma quantidade inteira, por esse motivo ela é fracionada, ocupado assim um grau de irregularidade.
Outro exemplo de fractais é o desenvolvimento geométrico em estruturas vegetais como samambaia, couve flor, romanesco etc..
De acordo com matemáricos, ao cortar um pedaço da couve flor, esse pedaço permanecerá em eu formato original do qual foi retirado. Assim o próprio Universo tem essa característica: a distribuição de galáxias é fractal, possuindo espaços vazios de todos os tamanhos.[pic 2][pic 3]
...