Princípio Cavalieri
Resenha: Princípio Cavalieri. Pesquise 862.000+ trabalhos acadêmicosPor: Brunogcordeiro • 16/10/2014 • Resenha • 2.795 Palavras (12 Páginas) • 278 Visualizações
usar isto, obscureceu lugares onde agora sabemos que deveria ter usado o limite. Estendeu a fórmula de quadratura para y = kxn para casos quando n era um número racional positivo usando indivisíveis, razões inteligentes e apelos ao raciocínio por analogia. A dependência de Wallis em fórmulas o levou a várias quadraturas interessantes.
Roberval explorou o Princípio de Cavalieri para encontrar a área sob um arco da ciclóide. Roberval e Pascal foram os primeiros a plotar as funções seno e co-seno e a encontrar as quadraturas destas curvas (para o primeiro quadrante). Pascal aproximou integrais duplas e triplas usando somas triangulares e piramidais. Estas não eram cubaturas, mas eram etapas em seu esforço para calcular os momentos de certos sólidos, para cada um dos quais ele então determinou o centro de gravidade.
Finalmente, Gregory St. Vincent (1584--1667) determinou a área sob a hipérbole xy = 1, usando retângulos estreitos inscritos e circunscritos de larguras diferentes especialmente desenhados e o método de compressão. St. Vincent estendeu esta e outras quadraturas para encontrar várias cubaturas. Logo depois disto, seu aluno, Alfonso Antonio de Sarasa (1618--1667) reconheceu que a quadratura da hipérbole está intimamente ligada à propriedade do produto do logaritmo!
Seguindo uma sugestão de Wallis, em 1657, William Neile (1637--1670) determinou o comprimento de uma seção arbitrária da parábola semicúbica, y2 = x3, e em 1658, Christopher Wren (1632--1723), o famoso arquiteto, encontrou o comprimento de um arco da ciclóide. Em 1659, Hendrick van Heuraet (1634-cerca de 1660) generalizou seu trabalho somando tangentes infinitesimais a uma curva, portanto desenvolveu a essência do nosso método moderno deretificação - usando uma integral para encontrar o comprimento de um arco.
Na forma geométrica, muito do cálculo nos primeiros dois terços do século 17 culminaram no The Geometrical Lectures(1670) de Isaac Barrow (1630--1677). Barrow deixou sua cadeira de Professor Lucasiano em Cambridge em favor de se ex-aluno Isaac Newton (1642--1727). Newton seguiu James Gregory (1638--1675) ao pensar na área da região entre uma curva e o eixo horizontal como uma variável; o extremo esquerdo era fixo, mas o extremo direito podia variar. Este truque lhe permitiu estender algumas fórmulas de quadratura de Wallis e o levou ao Teorema Fundamental do Cálculo. O último trabalho de Newton sobre cálculo, e também o primeiro a ser publicado, foi seu ensaio, "On the Quadrature of Curves" (Sobre Quadratura de Curvas), escrito entre 1691 e 1693 e publicado como um apêndice na edição de 1704 do seu Opticks. Neste, ele montou uma tabela extensa de integrais de funções algébricas um tanto complicadas, e para curvas as quais não podia desenvolver fórmulas de integração, inventou técnicas geométricas de quadratura. Usando oTeorema Fundamental do Cálculo, Newton desenvolveu as técnicas básicas para avaliar integrais usadas hoje em dia, incluindo os métodos de substituição e integração por partes.
Para Gottfried Wilhelm Leibniz (1646--1716), uma curva era um polígono com um número infinito de lados. Leibniz (1686) fez y representar uma ordenada da curva e dx a distância infinitesimal de uma abscissa para a próxima, isto é, a diferença entre abscissas "sucessivas". Então disse, "represento a área de uma figura pela soma de todos os retângulos [infinitesimais] limitados pelas ordenadas e diferenças das abscissas ... e assim represento em meu cálculo a área da figura por y dx". Leibniz tomou o "S" alongado para a integral do latim summa e d do latim differentia, e estas têm permanecido nossas notações de cálculo mais básicas desde então. Ele considerava as contas de cálculo como o meio de abreviar de algum modo o clássico método grego de exaustão. Leibniz era ambivalente sobre infinitesimais, mas acreditava que contas formais de cálculo poderiam ser confiáveis porque levavam a resultados corretos.
O termo integral, como usamos em cálculo, foi cunhado por Johann Bernoulli (1667--1748) e publicado primeiramente por seu irmão mais velho Jakob Bernoulli (1654--1705). Principalmente como uma conseqüência do poder do Teorema Fundamental do Cálculo de Newton e Leibniz, integrais eram consideradas simplesmente como derivadas "inversas". A área era uma noção intuitiva, quadraturas que não podiam ser encontradas usando o Teorema Fundamental do Cálculo eram aproximadas. Embora Newton tenha desferido um golpe muito imperfeito sobre a idéia de limite, ninguém nos séculos 18 e 19 teve a visão de combinar limites e áreas para definir a integral matematicamente. Em vez disso, com grande engenhosidade, muitas fórmulas de integração inteligentes foram desenvolvidas. Aproximadamente ao mesmo tempo em que a tabela de integrais de Newton tinha sido publicada, Johann Bernoulli desenvolveu procedimentos matemáticos para a integração de todas as funções racionais, o qual chamamos agora de método das frações parciais. Estas regras foram resumidas elegantemente por Leonhard Euler (1707--1783) em seu trabalho enciclopédico de três volumes sobre cálculo (1768-1770). Incidentalmente, estes esforços estimularam o aumento do interesse durante o século 18 na fatoração e resolução de equações polinomiais de graus elevados.
Enquanto descrevia as trajetórias dos cometas no Principia Mathematica (1687), Newton propôs um problema com implicações importantes para o cálculo: "Para encontrar uma curva do tipo parabólico [isto é, um polinômio] a qual deve passar por qualquer número de pontos dados", Newton redescobriu a fórmula de interpolação de James Gregory (1638--1675); hoje, é chamada de fórmula de Gregory-Newton, e em 1711, ele ressaltou sua importância: "Assim as áreas de todas as curvas podem ser aproximadas ... a área da parábola [polinômio] será quase igual à área da figura curvilínea ... a parábola [polinômio] pode sempre ser quadrada geometricamente por métodos conhecidos em geral [isto é, usando o Teorema Fundamental do Cálculo]". O trabalho de interpolação de Newton foi estendido em épocas distintas por Roger Cotes (1682--1716), James Stirling (1692--1770), Colin Maclaurin (1698--1746), Leonhard Euler e outros. Em 1743, o matemático autodidata Thomas Simpson (1710-1761) encontrou o que se tornou um caso especial, popular e útil das formulas de Newton-Cotes para aproximar uma integral, a Regra de Simpson.
Embora Euler tenha feito cálculos mais analíticos que geométricos, com ênfase em funções (1748; 1755; 1768), houve vários mal-entendidos sobre o conceito de função, propriamente dito, no século 18. Certos problemas de física, como oproblema da corda vibrante, contribuíram para esta confusão. Euler identificou tanto funções
...