TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

Matrizes e determinantes

Resenha: Matrizes e determinantes. Pesquise 862.000+ trabalhos acadêmicos

Por:   •  27/3/2014  •  Resenha  •  467 Palavras (2 Páginas)  •  334 Visualizações

Página 1 de 2

Cap¶³tulo 1

Matrizes e Determinantes

1.1 Generalidades

Iremos usar K para designar

IR conjunto dos n¶umeros reais

C conjunto dos n¶umeros complexos:

Deste modo, chamaremos

n¶umeros ou escalares

aos elementos de K.

Sejam m e n inteiros positivos.

(1.1 a) De¯ni»c~ao.

Chama-se matriz do tipo m £ n sobre K a todo o quadro

que se obt¶em dispondo mn n¶umeros segundo m linhas e

n colunas.

A =

2

66664

a11 a12 ¢ ¢ ¢ a1n

a21 a22 ¢ ¢ ¢ a2n

...

...

. . .

...

am1 am2 ¢ ¢ ¢ amn

3

77775

1

(1.1 b) Nota»c~oes. Usamos igualmente como abreviatura

A =

h

aij

i

i=1;:::;n ; j=1;:::;n

ou h

aij

i

m£n

ou ainda, simplesmente h

aij

i

caso se subentenda o tipo da matriz.

O n¶umero

aij

diz-se o elemento, entrada ou componente da matriz A. Em aij o

i indica a linha onde se situa o elemento

j indica a coluna onde se situa o elemento

e, como tal,

i diz-se o ¶³ndice de linha

j diz-se o ¶³ndice de coluna

do elemento aij .

O elemento aij diz-se ainda o elemento (i; j) da matriz A.

Para A matriz do tipo m £ n de elementos sobre K

i. a matriz A diz-se quadrada sempre que m = n ;

ii. rectangular m 6= n;

iii. matriz-linha

ou vector-linha m = 1;

iv. matriz-coluna

ou vector-coluna n = 1;

Representamos por

Mm£n(K)

o conjunto de todas as matrizes do tipo m £ n sobre K. Com abuso de

linguagem, usamos a nota»c~ao

Km

para representar Mm£1(K), ou seja, para representar o conjunto das ma-

trizes com m linhas e 1 coluna de elementos em K, as matrizes-coluna,

Mm£1(K) =

8>>>><

>>>>:

2

66664

a1

a2

...

am

3

77775

: ai 2 K; i = 1; 2; ¢ ¢ ¢ ;m

9>>>>=

>>>>;

»=

»=

Km = f(a1; a2; ¢ ¢ ¢ ; am) : ai 2 K; i = 1; 2; ¢ ¢ ¢ ;mg :

(1.1 c) De¯ni»c~ao.

As matrizes

A =

h

aij

i

2 Mm£n(K); B =

h

bk`

i

2 Mp£q(K)

dizem-se iguais sse

(

m = p

n = q

e aij = bij ; i = 1; :::;m; j = 1; :::; n:

(1.1 d) Nota»c~oes.

(I) Aos elementos

...

Baixar como (para membros premium)  txt (3.1 Kb)  
Continuar por mais 1 página »
Disponível apenas no TrabalhosGratuitos.com