O advento do cálculo integral
Tese: O advento do cálculo integral. Pesquise 861.000+ trabalhos acadêmicosPor: DIEGUITO • 13/11/2013 • Tese • 1.129 Palavras (5 Páginas) • 354 Visualizações
Passo 1
O surgimento do Cálculo Diferencial Integral
O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração.
O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.
Historicamente, Newton foi o primeiro a aplicar o cálculo à física, ao passo que Leibniz desenvolveu a notação utilizada até os dias de hoje. O argumento histórico para conferir aos dois a invenção do cálculo é que ambos chegaram de maneiras distintas ao teorema fundamental do cálculo.
Newton aperfeiçoou-se nos resultados da tangente e quadratura dos primeiros dois terços do século XVII. Ele afirmava em termos físicos quais eram os dois problemas mais básicos de cálculo: 1) Dado o comprimento do espaço continuamente, isto é, em todo instante de tempo, encontrar a velocidade do movimento, isto é, a derivada em qualquer tempo dado; 2) Dada a velocidade de movimento continuamente, encontrar o comprimento do espaço, isto é, a integral ou a anderivada, descrita em qualquer tempo proposto.
Mas no lugar de derivadas, Newton empregou fluxos de variáveis, denominados, por exemplo, de x, e em vez de anderivadas, usou o que ele chamou de fluente. A partir de Gregory Newton adotou-se a ideia de que a área entre uma curva y e o eixo horizontal, era dependente do extremo direito, t = x. De fato, Newton pensou na área como sendo realmente gerada pelo movimento da reta vertical t = x. Assim, o fluxo da área era simplesmente yx. Então, a técnica de Newton para encontrar tais quadraturas era encontrar o fluente de y, equivalente a encontrar nossas anderivadas.
As ideias de Leibniz sobre integrais, derivadas e cálculo em geral foram desenvolvidas a partir de analogias com somas e diferenças. Por exemplo, para o teorema fundamental do cálculo, se fosse dada uma sequência finita de números tais como: y,0,1,8,27,64,125 e 216, com diferenças y:1,7,19,37,61 e 89, ele notou que a soma das diferenças, y= (1-0)+
(8-1)+(27-8)+......(216-125), alternavam-se em torno da diferença entre o primeiro e o último valor de y, 216-0. Já para Leibniz, uma curva era um polígono feito de um número infinito de lados, cada um com comprimento ”infinitesimal”.
Passo 2
Desafio A
(a³/3+3/a³+3/a) da?
ʃ (a³/3+3/a³+3/a)da
ʃ (a³/3 da + 3/a³ da + 3/a da)
1/3.a4 + ((-3.(a^-²)/2)) + 3ln|a| + C
a4/12 – 3a-²/2 + 3ln|a| + C
a4/12 – 3/2a² + 3ln|a| + C
A alternativa correta é a “ B ”.
Desafio B
Suponha que o processo de perfuração de um poço de petróleo tenha um custo fixo de U$ 10.000 e um custo marginal de C’(q) =1000 + 50q dólares por pé, onde q é a profundidade em pés. Sabendo que C(0) = 10.000, a alternativa que expressa C(q), o custo total para se perfurar q pés, é:
C(q) = 1000+50q
ʃ (1000 + 50q) dq
1000q + 50q²/2 + C
1000q + 25q² + C
C(0) = 10000
C(0) = 1000q+ 25q² + C
C(0) = 1000(0)+ 25(0)² + C
10000 = 0 + 0 + C
C = 10000
C(q) = 10000 + 1000q + 25q²
A alternativa correta é a “ A “.
Desafio C
No início dos anos 90, a taxa de consumo mundial de petróleo cresceu exponencialmente. Seja C(t) a taxa de consumo de petróleo no instante t, onde t é o número de anos contados a partir do início de 1990. Um modelo aproximado para C(t) é dado por: C(t) = 16,1 e 0,07t. Qual das alternativas abaixo responde corretamente a quantidade de petróleo consumida entre 1992 e 1994?
∫_2^4〖16,1 e0,07t〗 U = 0,07t du = 0,07 dt du/0,07 = dt
16,1∫_2^4〖 (e^0,07t)〗 dt
16,1 ∫_2^4〖(e^u)〗 (du/0,07)
(16,1/0,07)∫_2^4〖 (e^u)〗 du
(16,1/0,07) (e^u )|24
230(e^u )|24
230(e^4 )- 230(e^2 )
304,32 – 264,56 = 39,76
alternativa correta é a “ C “.
Desafio D
A área sob a curva y = (e^(x/2) ) de x = -3 a x = 2 é dada por:
∫_(-3)^2〖 (e^(x/2))〗 dx u = x/2 du = 1/2dx 2du = dx
∫_(-3)^2〖 (e^u)〗(2du)
2∫_(-3)^2〖 (e^u)〗(du)
2 (e^(x/2)) |-3 2
...