TrabalhosGratuitos.com - Trabalhos, Monografias, Artigos, Exames, Resumos de livros, Dissertações
Pesquisar

O advento do cálculo integral

Tese: O advento do cálculo integral. Pesquise 861.000+ trabalhos acadêmicos

Por:   •  13/11/2013  •  Tese  •  1.129 Palavras (5 Páginas)  •  354 Visualizações

Página 1 de 5

Passo 1

O surgimento do Cálculo Diferencial Integral

O cálculo diferencial integral, também chamado de cálculo infinitesimal, ou simplesmente cálculo, é um ramo da matemática desenvolvido a partir da álgebra e da geometria, que se dedica ao estudo de taxas de variações de grandezas (como inclinação de uma reta) e a acumulação de quantidades (como a área debaixo de uma curva ou o volume de um sólido), em que há movimento ou crescimento e que forças variáveis agem produzindo aceleração.

O cálculo foi criado como uma ferramenta auxiliar em várias áreas das ciências exatas. Foi desenvolvido por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716), em trabalhos independentes.

Historicamente, Newton foi o primeiro a aplicar o cálculo à física, ao passo que Leibniz desenvolveu a notação utilizada até os dias de hoje. O argumento histórico para conferir aos dois a invenção do cálculo é que ambos chegaram de maneiras distintas ao teorema fundamental do cálculo.

Newton aperfeiçoou-se nos resultados da tangente e quadratura dos primeiros dois terços do século XVII. Ele afirmava em termos físicos quais eram os dois problemas mais básicos de cálculo: 1) Dado o comprimento do espaço continuamente, isto é, em todo instante de tempo, encontrar a velocidade do movimento, isto é, a derivada em qualquer tempo dado; 2) Dada a velocidade de movimento continuamente, encontrar o comprimento do espaço, isto é, a integral ou a anderivada, descrita em qualquer tempo proposto.

Mas no lugar de derivadas, Newton empregou fluxos de variáveis, denominados, por exemplo, de x, e em vez de anderivadas, usou o que ele chamou de fluente. A partir de Gregory Newton adotou-se a ideia de que a área entre uma curva y e o eixo horizontal, era dependente do extremo direito, t = x. De fato, Newton pensou na área como sendo realmente gerada pelo movimento da reta vertical t = x. Assim, o fluxo da área era simplesmente yx. Então, a técnica de Newton para encontrar tais quadraturas era encontrar o fluente de y, equivalente a encontrar nossas anderivadas.

As ideias de Leibniz sobre integrais, derivadas e cálculo em geral foram desenvolvidas a partir de analogias com somas e diferenças. Por exemplo, para o teorema fundamental do cálculo, se fosse dada uma sequência finita de números tais como: y,0,1,8,27,64,125 e 216, com diferenças y:1,7,19,37,61 e 89, ele notou que a soma das diferenças, y= (1-0)+

(8-1)+(27-8)+......(216-125), alternavam-se em torno da diferença entre o primeiro e o último valor de y, 216-0. Já para Leibniz, uma curva era um polígono feito de um número infinito de lados, cada um com comprimento ”infinitesimal”.

Passo 2

Desafio A

(a³/3+3/a³+3/a) da?

ʃ (a³/3+3/a³+3/a)da

ʃ (a³/3 da + 3/a³ da + 3/a da)

1/3.a4 + ((-3.(a^-²)/2)) + 3ln|a| + C

a4/12 – 3a-²/2 + 3ln|a| + C

a4/12 – 3/2a² + 3ln|a| + C

A alternativa correta é a “ B ”.

Desafio B

Suponha que o processo de perfuração de um poço de petróleo tenha um custo fixo de U$ 10.000 e um custo marginal de C’(q) =1000 + 50q dólares por pé, onde q é a profundidade em pés. Sabendo que C(0) = 10.000, a alternativa que expressa C(q), o custo total para se perfurar q pés, é:

C(q) = 1000+50q

ʃ (1000 + 50q) dq

1000q + 50q²/2 + C

1000q + 25q² + C

C(0) = 10000

C(0) = 1000q+ 25q² + C

C(0) = 1000(0)+ 25(0)² + C

10000 = 0 + 0 + C

C = 10000

C(q) = 10000 + 1000q + 25q²

A alternativa correta é a “ A “.

Desafio C

No início dos anos 90, a taxa de consumo mundial de petróleo cresceu exponencialmente. Seja C(t) a taxa de consumo de petróleo no instante t, onde t é o número de anos contados a partir do início de 1990. Um modelo aproximado para C(t) é dado por: C(t) = 16,1 e 0,07t. Qual das alternativas abaixo responde corretamente a quantidade de petróleo consumida entre 1992 e 1994?

∫_2^4〖16,1 e0,07t〗 U = 0,07t du = 0,07 dt du/0,07 = dt

16,1∫_2^4〖 (e^0,07t)〗 dt

16,1 ∫_2^4〖(e^u)〗 (du/0,07)

(16,1/0,07)∫_2^4〖 (e^u)〗 du

(16,1/0,07) (e^u )|24

230(e^u )|24

230(e^4 )- 230(e^2 )

304,32 – 264,56 = 39,76

alternativa correta é a “ C “.

Desafio D

A área sob a curva y = (e^(x/2) ) de x = -3 a x = 2 é dada por:

∫_(-3)^2〖 (e^(x/2))〗 dx u = x/2 du = 1/2dx 2du = dx

∫_(-3)^2〖 (e^u)〗(2du)

2∫_(-3)^2〖 (e^u)〗(du)

2 (e^(x/2)) |-3 2

...

Baixar como (para membros premium)  txt (6.2 Kb)  
Continuar por mais 4 páginas »
Disponível apenas no TrabalhosGratuitos.com